A bridge between convexity and quasiconvexity
Julkaisuvuosi
2025
Tekijät
Blanc, Pablo; Parviainen, Mikko; Rossi, Julio D.
Tiivistelmä
We introduce a notion of convexity with respect to a one-dimensional operator and with this notion find a one-parameter family of different convexities that interpolates between classical convexity and quasiconvexity. We show that, for this interpolation family, the convex envelope of a continuous boundary datum in a strictly convex domain is continuous up to the boundary and is characterized as being the unique viscosity solution to the Dirichlet problem in the domain for a certain fully nonlinear partial differential equation that involves the associated operator. In addition we prove that the convex envelopes of a boundary datum constitute a one-parameter curve of functions that goes from the quasiconvex envelope to the convex envelope being continuous with respect to uniform convergence. Finally, we also show some regularity results for the convex envelopes proving that there is an analogous to a supporting hyperplane at every point and that convex envelopes are C1 if the boundary data satisfies in particular NV-condition we introduce.
Näytä enemmänOrganisaatiot ja tekijät
Julkaisutyyppi
Julkaisumuoto
Artikkeli
Emojulkaisun tyyppi
Lehti
Artikkelin tyyppi
Alkuperäisartikkeli
Yleisö
TieteellinenVertaisarvioitu
VertaisarvioituOKM:n julkaisutyyppiluokitus
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäJulkaisukanavan tiedot
Lehti
Kustantaja
Volyymi
Early online
ISSN
Julkaisufoorumi
Julkaisufoorumitaso
2
Avoin saatavuus
Avoin saatavuus kustantajan palvelussa
Ei
Rinnakkaistallennettu
Ei
Muut tiedot
Tieteenalat
Matematiikka
Avainsanat
[object Object]
Julkaisumaa
Saksa
Kustantajan kansainvälisyys
Kansainvälinen
Kieli
englanti
Kansainvälinen yhteisjulkaisu
Kyllä
Yhteisjulkaisu yrityksen kanssa
Ei
DOI
10.1515/forum-2024-0190
Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen
Kyllä