undefined

Finite (quantum) effect algebras

Julkaisuvuosi

2025

Tekijät

Gudder, Stan; Heinosaari, Teiko

Tiivistelmä

We investigate finite effect algebras and their classification. We show that an effect algebra with n elements has at least n−2 and at most (n−1)(n−2)/2 nontrivial defined sums. We characterize finite effect algebras with these minimal and maximal number of defined sums. The latter effect algebras are scale effect algebras (i.e., subalgebras of [0,1]), and only those. We prove that there is exactly one scale effect algebra with n elements for every integer n≥2. We show that a finite effect algebra is quantum effect algebra (i.e. a subeffect algebra of the standard quantum effect algebra) if and only if it has a finite set of order-determining states. Among effect algebras with 2-6 elements, we identify all quantum effect algebras.
Näytä enemmän

Organisaatiot ja tekijät

Jyväskylän yliopisto

Heinosaari Teiko Orcid -palvelun logo

Julkaisutyyppi

Julkaisumuoto

Artikkeli

Emojulkaisun tyyppi

Lehti

Artikkelin tyyppi

Alkuperäisartikkeli

Yleisö

Tieteellinen

Vertaisarvioitu

Vertaisarvioitu

OKM:n julkaisutyyppiluokitus

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisukanavan tiedot

Volyymi

58

Numero

5

Artikkelinumero

055303

Julkaisu­foorumi

61358

Julkaisufoorumitaso

2

Avoin saatavuus

Avoin saatavuus kustantajan palvelussa

Ei

Rinnakkaistallennettu

Kyllä

Muut tiedot

Tieteenalat

Matematiikka; Tietojenkäsittely ja informaatiotieteet; Fysiikka

Avainsanat

[object Object]

Julkaisumaa

Yhdistynyt kuningaskunta

Kustantajan kansainvälisyys

Kansainvälinen

Kieli

englanti

Kansainvälinen yhteisjulkaisu

Kyllä

Yhteisjulkaisu yrityksen kanssa

Ei

DOI

10.1088/1751-8121/adac1a

Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen

Kyllä