Firefront Forecasting in Boreal Forests : Machine Learning Approach to Predict Wildfire Propagation
Julkaisuvuosi
2024
Tekijät
Raita-Hakola, Anna-Maria; Pölönen, Ilkka
Tiivistelmä
Wildfires have become increasingly prevalent worldwide due to climate change, posing significant threats to human lives, property, and natural ecosystems. The rapid progression of wildfires necessitates predictive computational models to assist firefighters in effectively developing strategies to control firefronts. However, existing models often face challenges in computational complexity as the firefront expands. This study aims to develop a faster, more computationally efficient, deep-learning-based model for predicting wildfire spread. We hypothesise that firefront propagation can be modelled using stochastic cellular automata and that a deep-learning model can mimic this approach. With this in mind, we will first introduce our in-house stochastic cellular automata model, which is being validated with data from a known Finnish wildfire. After that, we propose a novel deep-learning model which uses the data generated by our cellular automata. The deep-learning-based model was based on Unet architecture, and it is capable of predicting firefront progression accurately and efficiently one time-step at a time. The model provided realistic simulations of firefronts with high computational efficiency, leaving future development needs to longer time series. One potential application of the developed model is in UAV-based real-time wildfire management systems.
Näytä enemmänOrganisaatiot ja tekijät
Julkaisutyyppi
Julkaisumuoto
Artikkeli
Emojulkaisun tyyppi
Lehti
Artikkelin tyyppi
Alkuperäisartikkeli
Yleisö
TieteellinenVertaisarvioitu
VertaisarvioituOKM:n julkaisutyyppiluokitus
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäJulkaisukanavan tiedot
Kustantaja
Volyymi
XLVIII
Numero
3
Sivut
445-452
ISSN
Julkaisufoorumi
Julkaisufoorumitaso
1
Avoin saatavuus
Avoin saatavuus kustantajan palvelussa
Kyllä
Julkaisukanavan avoin saatavuus
Kokonaan avoin julkaisukanava
Rinnakkaistallennettu
Kyllä
Muut tiedot
Tieteenalat
Tietojenkäsittely ja informaatiotieteet
Avainsanat
[object Object],[object Object],[object Object],[object Object],[object Object]
Julkaisumaa
Saksa
Kustantajan kansainvälisyys
Kansainvälinen
Kieli
englanti
Kansainvälinen yhteisjulkaisu
Ei
Yhteisjulkaisu yrityksen kanssa
Ei
DOI
10.5194/isprs-archives-xlviii-3-2024-445-2024
Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen
Kyllä