Density of continuous functions in Sobolev spaces with applications to capacity
Julkaisuvuosi
2024
Tekijät
Eriksson-Bique, Sylvester; Poggi-Corradini, Pietro
Tiivistelmä
We show that capacity can be computed with locally Lipschitz functions in locally complete and separable metric spaces. Further, we show that if (X, d, μ) is a locally complete and separable metric measure space, then continuous functions are dense in the Newtonian space N1,p (X). Here the measure μ is Borel and is finite and positive on all metric balls. In particular, we don’t assume properness of X, doubling of μ or any Poincaré inequali-ties. These resolve, partially or fully, questions posed by a number of authors, including J. Heinonen, A. Björn and J. Björn. In contrast to much of the past work, our results apply to locally complete spaces X and dispenses with the frequently used regularity assumptions: doubling, properness, Poincaré inequality, Loewner property or quasiconvexity.
Näytä enemmänOrganisaatiot ja tekijät
Julkaisutyyppi
Julkaisumuoto
Artikkeli
Emojulkaisun tyyppi
Lehti
Artikkelin tyyppi
Alkuperäisartikkeli
Yleisö
TieteellinenVertaisarvioitu
VertaisarvioituOKM:n julkaisutyyppiluokitus
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäJulkaisukanavan tiedot
Kustantaja
Volyymi
11
Sivut
901-944
ISSN
Julkaisufoorumi
Julkaisufoorumitaso
3
Avoin saatavuus
Avoin saatavuus kustantajan palvelussa
Kyllä
Julkaisukanavan avoin saatavuus
Kokonaan avoin julkaisukanava
Rinnakkaistallennettu
Kyllä
Muut tiedot
Tieteenalat
Matematiikka
Avainsanat
[object Object],[object Object]
Julkaisumaa
Yhdysvallat (USA)
Kustantajan kansainvälisyys
Kansainvälinen
Kieli
englanti
Kansainvälinen yhteisjulkaisu
Kyllä
Yhteisjulkaisu yrityksen kanssa
Ei
DOI
10.1090/btran/188
Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen
Kyllä