Carleman estimates for geodesic X-ray transforms

Carleman estimates for geodesic X-ray transforms

Julkaisuvuosi

2023

Tekijät

Paternain, Gabriel P.; Salo, Mikko

Tiivistelmä

In this article we introduce an approach for studying the geodesic X-ray transform and related geometric inverse problems by using Carleman estimates. The main result states that on compact negatively curved manifolds (resp. nonpositively curved simple or Anosov manifolds), the geodesic vector field satisfies a Carleman estimate with logarithmic weights (resp. linear weights) on the frequency side. As a particular consequence, on negatively curved simple manifolds the geodesic X-ray transform with attenuation given by a general connection and Higgs field is invertible modulo natural obstructions. The proof is based on showing that the Pestov energy identity for the geodesic vector field completely localizes in frequency. Our approach works in all dimensions ≥2, on negatively curved manifolds with or without boundary, and for tensor fields of any order.
Näytä enemmän

Organisaatiot ja tekijät

Julkaisutyyppi

Julkaisumuoto

Artikkeli

Emojulkaisun tyyppi

Lehti

Artikkelin tyyppi

Alkuperäisartikkeli

Yleisö

Tieteellinen

Vertaisarvioitu

Vertaisarvioitu

OKM:n julkaisutyyppiluokitus

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisukanavan tiedot

Volyymi

56

Numero

5

Sivut

1339-1379

Julkaisu­foorumi

51178

Julkaisufoorumitaso

3

Avoin saatavuus

Avoin saatavuus kustantajan palvelussa

Ei

Rinnakkaistallennettu

Ei

Julkaisumaa

Ranska

Kustantajan kansainvälisyys

Kansainvälinen

Kieli

englanti

Kansainvälinen yhteisjulkaisu

Kyllä

Yhteisjulkaisu yrityksen kanssa

Ei

DOI

10.24033/asens.2557

Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen

Kyllä

Carleman estimates for geodesic X-ray transforms - Tiedejatutkimus.fi