Spatial Blind Source Separation in the Presence of a Drift
Julkaisuvuosi
2024
Tekijät
Muehlmann, Christoph; Filzmoser, Peter; Nordhausen, Klaus
Tiivistelmä
Multivariate measurements taken at different spatial locations occur frequently in practice. Proper analysis of such data needs to consider not only dependencies on-sight but also dependencies in and in-between variables as a function of spatial separation. Spatial Blind Source Separation (SBSS) is a recently developed unsupervised statistical tool that deals with such data by assuming that the observable data is formed by a linear latent variable model. In SBSS the latent variable is assumed to be constituted by weakly stationary random fields which are uncorrelated. Such a model is appealing as further analysis can be carried out on the marginal distributions of the latent variables, interpretations are straightforward as the model is assumed to be linear, and not all components of the latent field might be of interest which acts as a form of dimension reduction. The weakly stationarity assumption of SBSS implies that the mean of the data is constant for all sample locations, which might be too restricting in practical applications. Therefore, an adaptation of SBSS that uses scatter matrices based on differences was recently suggested in the literature. In our contribution we formalize these ideas, suggest a novel adapted SBSS method and show its usefulness on synthetic data and illustrate its use in a real data application.
Näytä enemmänOrganisaatiot ja tekijät
Julkaisutyyppi
Julkaisumuoto
Artikkeli
Emojulkaisun tyyppi
Lehti
Artikkelin tyyppi
Alkuperäisartikkeli
Yleisö
TieteellinenVertaisarvioitu
VertaisarvioituOKM:n julkaisutyyppiluokitus
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäJulkaisukanavan tiedot
Kustantaja
Volyymi
53
Numero
2
Sivut
48-68
ISSN
Julkaisufoorumi
Julkaisufoorumitaso
1
Avoin saatavuus
Avoin saatavuus kustantajan palvelussa
Kyllä
Julkaisukanavan avoin saatavuus
Kokonaan avoin julkaisukanava
Rinnakkaistallennettu
Kyllä
Muut tiedot
Tieteenalat
Tilastotiede
Avainsanat
[object Object],[object Object],[object Object],[object Object]
Julkaisumaa
Itävalta
Kustantajan kansainvälisyys
Kansainvälinen
Kieli
englanti
Kansainvälinen yhteisjulkaisu
Kyllä
Yhteisjulkaisu yrityksen kanssa
Ei
DOI
10.17713/ajs.v53i2.1668
Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen
Kyllä