Magnetic fractional Poincaré inequality in punctured domains
Julkaisuvuosi
2024
Tekijät
Bal, Kaushik; Mohanta, Kaushik; Roy, Prosenjit
Tiivistelmä
We study Poincaré-Wirtinger type inequalities in the framework of magnetic fractional Sobolev spaces. In the local case, Lieb et al. (2003) [19] showed that, if a bounded domain Ω is the union of two disjoint sets Γ and Λ, then the Lp-norm of a function calculated on Ω is dominated by the sum of magnetic seminorms of the function, calculated on Γ and Λ separately. We show that the straightforward generalisation of their result to nonlocal setup does not hold true in general. We provide an alternative formulation of the problem for the nonlocal case. As an auxiliary result, we also show that the set of eigenvalues of the magnetic fractional Laplacian is discrete.
Näytä enemmänOrganisaatiot ja tekijät
Julkaisutyyppi
Julkaisumuoto
Artikkeli
Emojulkaisun tyyppi
Lehti
Artikkelin tyyppi
Alkuperäisartikkeli
Yleisö
TieteellinenVertaisarvioitu
VertaisarvioituOKM:n julkaisutyyppiluokitus
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäJulkaisukanavan tiedot
Kustantaja
Volyymi
535
Numero
1
Artikkelinumero
128103
ISSN
Julkaisufoorumi
Julkaisufoorumitaso
1
Avoin saatavuus
Avoin saatavuus kustantajan palvelussa
Kyllä
Julkaisukanavan avoin saatavuus
Osittain avoin julkaisukanava
Rinnakkaistallennettu
Kyllä
Muut tiedot
Tieteenalat
Matematiikka
Avainsanat
[object Object],[object Object],[object Object],[object Object]
Julkaisumaa
Yhdysvallat (USA)
Kustantajan kansainvälisyys
Kansainvälinen
Kieli
englanti
Kansainvälinen yhteisjulkaisu
Kyllä
Yhteisjulkaisu yrityksen kanssa
Ei
DOI
10.1016/j.jmaa.2024.128103
Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen
Kyllä