Hölder estimate for a tug-of-war game with 1 < p < 2 from Krylov–Safonov regularity theory
Julkaisuvuosi
2024
Tekijät
Arroyo, Ángel; Parviainen, Mikko
Tiivistelmä
We propose a new version of the tug-of-war game and a corresponding dynamic programming principle related to the p-Laplacian with 1 < p < 2 . For this version, the asymptotic Hölder continuity of solutions can be directly derived from recent Krylov–Safonov type regularity results in the singular case. Moreover, existence of a measurable solution can be obtained without using boundary corrections. We also establish a comparison principle.
Näytä enemmänOrganisaatiot ja tekijät
Julkaisutyyppi
Julkaisumuoto
Artikkeli
Emojulkaisun tyyppi
Lehti
Artikkelin tyyppi
Alkuperäisartikkeli
Yleisö
TieteellinenVertaisarvioitu
VertaisarvioituOKM:n julkaisutyyppiluokitus
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäJulkaisukanavan tiedot
Volyymi
40
Numero
3
Sivut
1023-1044
ISSN
Julkaisufoorumi
Julkaisufoorumitaso
2
Avoin saatavuus
Avoin saatavuus kustantajan palvelussa
Kyllä
Julkaisukanavan avoin saatavuus
Kokonaan avoin julkaisukanava
Rinnakkaistallennettu
Ei
Muut tiedot
Tieteenalat
Matematiikka
Avainsanat
[object Object],[object Object]
Julkaisumaa
Saksa
Kustantajan kansainvälisyys
Kansainvälinen
Kieli
englanti
Kansainvälinen yhteisjulkaisu
Kyllä
Yhteisjulkaisu yrityksen kanssa
Ei
DOI
10.4171/rmi/1462
Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen
Kyllä