First-order heat content asymptotics on RCD(K,N) spaces
Julkaisuvuosi
2024
Tekijät
Caputo, Emanuele; Rossi, Tommaso
Tiivistelmä
In this paper, we prove first-order asymptotics on a bounded open set of the heat content when the ambient space is an RCD(K, N) space, under a regularity condition for the boundary that we call measured interior geodesic condition of size ϵ. We carefully study such a condition, relating it to the properties of the disintegration of the signed distance function from ∂Ω studied in Cavalletti and Mondino (2020).
Näytä enemmänOrganisaatiot ja tekijät
Jyväskylän yliopisto
Caputo Emanuele
Julkaisutyyppi
Julkaisumuoto
Artikkeli
Emojulkaisun tyyppi
Lehti
Artikkelin tyyppi
Alkuperäisartikkeli
Yleisö
TieteellinenVertaisarvioitu
VertaisarvioituOKM:n julkaisutyyppiluokitus
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäJulkaisukanavan tiedot
Kustantaja
Volyymi
238
Artikkelinumero
113385
ISSN
Julkaisufoorumi
Julkaisufoorumitaso
1
Avoin saatavuus
Avoin saatavuus kustantajan palvelussa
Kyllä
Julkaisukanavan avoin saatavuus
Osittain avoin julkaisukanava
Rinnakkaistallennettu
Kyllä
Muut tiedot
Tieteenalat
Matematiikka
Avainsanat
[object Object],[object Object],[object Object]
Julkaisumaa
Yhdistynyt kuningaskunta
Kustantajan kansainvälisyys
Kansainvälinen
Kieli
englanti
Kansainvälinen yhteisjulkaisu
Kyllä
Yhteisjulkaisu yrityksen kanssa
Ei
DOI
10.1016/j.na.2023.113385
Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen
Kyllä