Harmonization of multi-site MRI data
Julkaisuvuosi
2023
Tekijät
Xu, Huashuai
Tiivistelmä
Magneettikuvauksen (MRI) tietojen yhdistäminen eri paikoista on nykyisin yleistä, jotta tutkittavaksi saadaan suurempia ja monimuotoisempia ryhmiä, mikä tekee tutkimuksista tehokkaampia ja edustavampia. Kuitenkin tämä lähestymistapa kohtaa haasteita johtuen MRI-laitteiden eroista, jotka voivat vääristää tuloksia. Näiden paikkakohtaisten vaikutusten korjaamiseen käytetään kahta menetelmää, riippumattomien komponenttien analyysia (ICA) ja yleistä lineaarista mallia (GLM), mutta niillä on vaikeuksia poistaa ne täysin vaikuttamatta datan todellisiin signaaleihin, erityisesti kun nämä signaalit liittyvät juuri niihin skannerieroavaisuuksiin, joita ne pyrkivät korjaamaan. Tässä väitöskirjassa ehdotetaan tehokasta kohinanpoistomenetelmää, joka soveltaa kaksiprojektion (DP) teoriaa riippumattoman komponenttianalyysin (ICA) pohjalta poistaakseen paikkakohtaiset vaikutukset yhdistetystä datasta. Tämä menetelmä voi erottaa signaalivaikutukset tunnistetuista paikkakohtaisista komponenteista ja poistaa sitten paikkavaikutukset menettämättä kiinnostuksen kohteena olevia signaaleja. Validoidaksemme menetelmän tehokkuuden simuloimme kaksi eri skenaariota, joissa toisessa paikka- ja signaalimuuttuja korreloivat ja toisessa eivät. ICA-DP-menetelmiä paikkavaikutusten poistamiseksi ja signaalivaikutusten säilyttämiseksi on testattu käyttäen useita erilaisia rakenteellisia ja toiminnallisia magneettikuvausaineistoja. Väitöskirjassa esitetään myös uudenlainen monimuotoinen kohinanpoistomenetelmä paikkavaikutusten poistamiseksi, jossa kaksiprojektiomenetelmä (DP) yhdistetään linkitetyn riippumattomien komponenttien analyysin (LICA) kanssa. Yksimuotoisiin tutkimuksiin verrattuna LICA:n käyttö monimuotoisissa MRI-tiedoissa tarjoaa tarkemman arvion paikkavaikutuksista. LICA-DP-menetelmän toimivuus todennettiin olemassa olevien rakenteellisten ja toiminnallisten MRI-aineistojen avulla. ICA-DP- ja LICA-DP-menetelmät osoittautuvat tehokkaiksi tavoiksi paikkavaikutusten poistamiseksi ja biologisen vaihtelun säilyttämiseksi. Tämä lähestymistapa voi merkittävästi parantaa neurokuvantamistutkimusten validiteettia, luoden arvokkaan työkalun myös tuleville tutkimuksille.
Näytä enemmänOrganisaatiot ja tekijät
Julkaisutyyppi
Julkaisumuoto
Erillisteos
Yleisö
Tieteellinen
OKM:n julkaisutyyppiluokitus
G5 Artikkeliväitöskirja
Julkaisukanavan tiedot
Avoin saatavuus
Avoin saatavuus kustantajan palvelussa
Kyllä
Julkaisukanavan avoin saatavuus
Kokonaan avoin julkaisukanava
Rinnakkaistallennettu
Ei
Muut tiedot
Tieteenalat
Tietojenkäsittely ja informaatiotieteet
Avainsanat
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Julkaisumaa
Suomi
Kustantajan kansainvälisyys
Kotimainen
Kieli
suomi
Kansainvälinen yhteisjulkaisu
Ei
Yhteisjulkaisu yrityksen kanssa
Ei
Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen
Kyllä