Quantification of Errors Generated by Uncertain Data in a Linear Boundary Value Problem Using Neural Networks
Julkaisuvuosi
2023
Tekijät
Halonen, Vilho; Pölönen, Ilkka
Tiivistelmä
Quantifying errors caused by indeterminacy in data is currently computationally expensive even in relatively simple PDE problems. Efficient methods could prove very useful in, for example, scientific experiments done with simulations. In this paper, we create and test neural networks which quantify uncertainty errors in the case of a linear one-dimensional boundary value problem. Training and testing data is generated numerically. We created three training datasets and three testing datasets and trained four neural networks with differing architectures. The performance of the neural networks is compared to known analytical bounds of errors caused by uncertain data. We find that the trained neural networks accurately approximate the exact error quantity in almost all cases and the neural network outputs are always between the analytical upper and lower bounds. The results of this paper show that after a suitable dataset is used for training even a relatively compact neural network can successfully predict quantitative effects generated by uncertain data. If these methods can be extended to more difficult PDE problems they could potentially have a multitude of real-world applications.
Näytä enemmänOrganisaatiot ja tekijät
Julkaisutyyppi
Julkaisumuoto
Artikkeli
Emojulkaisun tyyppi
Lehti
Artikkelin tyyppi
Alkuperäisartikkeli
Yleisö
TieteellinenVertaisarvioitu
VertaisarvioituOKM:n julkaisutyyppiluokitus
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäJulkaisukanavan tiedot
Volyymi
11
Numero
4
Sivut
1258-1277
ISSN
Julkaisufoorumi
Julkaisufoorumitaso
1
Avoin saatavuus
Avoin saatavuus kustantajan palvelussa
Ei
Rinnakkaistallennettu
Kyllä
Muut tiedot
Tieteenalat
Tietojenkäsittely ja informaatiotieteet
Avainsanat
[object Object],[object Object]
Julkaisumaa
Yhdysvallat (USA)
Kustantajan kansainvälisyys
Kansainvälinen
Kieli
englanti
Kansainvälinen yhteisjulkaisu
Ei
Yhteisjulkaisu yrityksen kanssa
Ei
DOI
10.1137/22M1538855
Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen
Kyllä