undefined

Encryption and Generation of Images for Privacy-Preserving Machine Learning in Smart Manufacturing

Julkaisuvuosi

2023

Tekijät

Terziyan, Vagan; Malyk, Diana; Golovianko, Mariia; Branytskyi, Vladyslav

Tiivistelmä

Current advances in machine (deep) learning and the exponential growth of data collected by and shared between smart manufacturing processes give a unique opportunity to get extra value from that data. The use of public machine learning services actualizes the issue of data privacy. Ordinary encryption protects the data but could make it useless for the machine learning objectives. Therefore, “privacy of data vs. value from data” is the major dilemma within the privacy preserving machine learning activity. Special encryption techniques or synthetic data generation are being in focus to address the issue. In this paper, we discuss a complex hybrid protection algorithm, which assumes sequential use of two components: homeomorphic data space transformation and synthetic data generation. Special attention is given to the privacy of image data. Specifics of image representation require special approaches towards encryption and synthetic image generation. We suggest use of (convolutional, variational) autoencoders and pre-trained feature extractors to enable applying privacy protection algorithms on top of the latent feature vectors captured from the images, and we updated the hybrid algorithms composed of homeomorphic transformation-as-encryption plus synthetic image generation accordingly. We show that an encrypted image can be reconstructed (by the pre-trained Decoder component of the convolutional variational autoencoder) into a secured representation from the extracted (by either the Encoder or a feature extractor) and encrypted (homeomorphic transformation of the latent space) feature vector. See presentation slides: https://ai.it.jyu.fi/ISM-2022-Image_Encryption.pptx
Näytä enemmän

Organisaatiot ja tekijät

Jyväskylän yliopisto

Terziyan Vagan Orcid -palvelun logo

Julkaisutyyppi

Julkaisumuoto

Artikkeli

Emojulkaisun tyyppi

Konferenssi

Artikkelin tyyppi

Muu artikkeli

Yleisö

Tieteellinen

Vertaisarvioitu

Vertaisarvioitu

OKM:n julkaisutyyppiluokitus

A4 Artikkeli konferenssijulkaisussa

Julkaisukanavan tiedot

Emojulkaisun toimittajat

Longo, Francesco; Affenzeller, Michael; Padovano, Antonio; Weiming, Shen

Kustantaja

Elsevier

Volyymi

217

Sivut

91-101

Julkaisu­foorumi

71301

Julkaisufoorumitaso

1

Avoin saatavuus

Avoin saatavuus kustantajan palvelussa

Kyllä

Julkaisukanavan avoin saatavuus

Kokonaan avoin julkaisukanava

Rinnakkaistallennettu

Kyllä

Muut tiedot

Tieteenalat

Tietojenkäsittely ja informaatiotieteet

Avainsanat

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Julkaisumaa

Alankomaat

Kustantajan kansainvälisyys

Kansainvälinen

Kieli

englanti

Kansainvälinen yhteisjulkaisu

Kyllä

Yhteisjulkaisu yrityksen kanssa

Ei

DOI

10.1016/j.procs.2022.12.205

Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen

Kyllä