Defensive Machine Learning Methods and the Cyber Defence Chain
Julkaisuvuosi
2023
Tekijät
Turtiainen, Hannu; Costin, Andrei; Hämäläinen, Timo
Tiivistelmä
Cyberattacks are now occurring on a daily basis. As attacks and breaches are so frequent, and the fact that human work hours do not scale infinitely, the cybersecurity industry needs innovative and scalable tools and techniques to automate certain cybersecurity defensive tasks in order to keep up. The variety, the complex nature of the attacks, and the effectiveness of 0-day attacks mean that conventional tools are not adequate for securing complex networks with large numbers of users and endpoints with differing identities, behavior, and needs. Machine learning and artificial intelligence aid the creators of security tools in their tasks by introducing adaptive environment possibilities, customizability, and the ability to learn from past attacks and predict future attack attempts. In this chapter, we address innovations in machine learning, deep learning, and artificial intelligence within the defensive cybersecurity fields. We structure this chapter inline with the OWASP Cyber Defense Matrix in order to cover adequate grounds on this broad topic, and refer occasionally to the more granular MITRE D3FEND taxonomy whenever relevant.
Näytä enemmänOrganisaatiot ja tekijät
Julkaisutyyppi
Julkaisumuoto
Artikkeli
Emojulkaisun tyyppi
Kokoomateos
Artikkelin tyyppi
Muu artikkeli
Yleisö
TieteellinenVertaisarvioitu
VertaisarvioituOKM:n julkaisutyyppiluokitus
A3 Kirjan tai muun kokoomateoksen osaJulkaisukanavan tiedot
Emojulkaisun nimi
Artificial Intelligence and Cybersecurity : Theory and Applications
Emojulkaisun toimittajat
Sipola, Tuomo; Kokkonen, Tero; Karjalainen, Mika
Kustantaja
Sivut
147-163
ISBN
Julkaisufoorumi
Julkaisufoorumitaso
2
Avoin saatavuus
Avoin saatavuus kustantajan palvelussa
Ei
Rinnakkaistallennettu
Kyllä
Muut tiedot
Tieteenalat
Tietojenkäsittely ja informaatiotieteet
Avainsanat
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Julkaisumaa
Sveitsi
Kustantajan kansainvälisyys
Kansainvälinen
Kieli
englanti
Kansainvälinen yhteisjulkaisu
Ei
Yhteisjulkaisu yrityksen kanssa
Ei
DOI
10.1007/978-3-031-15030-2_7
Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen
Kyllä