Monotonicity Formulas for Harmonic Functions in RCD(0,N) Spaces
Julkaisuvuosi
2023
Tekijät
Gigli, Nicola; Violo, Ivan Yuri
Tiivistelmä
We generalize to the RCD(0,N) setting a family of monotonicity formulas by Colding and Minicozzi for positive harmonic functions in Riemannian manifolds with nonnegative Ricci curvature. Rigidity and almost rigidity statements are also proven, the second appearing to be new even in the smooth setting. Motivated by the recent work in Agostiniani et al. (Invent. Math. 222(3):1033–1101, 2020), we also introduce the notion of electrostatic potential in RCD spaces, which also satisfies our monotonicity formulas. Our arguments are mainly based on new estimates for harmonic functions in RCD(K,N) spaces and on a new functional version of the ‘(almost) outer volume cone implies (almost) outer metric cone’ theorem.
Näytä enemmänOrganisaatiot ja tekijät
Julkaisutyyppi
Julkaisumuoto
Artikkeli
Emojulkaisun tyyppi
Lehti
Artikkelin tyyppi
Alkuperäisartikkeli
Yleisö
TieteellinenVertaisarvioitu
VertaisarvioituOKM:n julkaisutyyppiluokitus
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäJulkaisukanavan tiedot
Kustantaja
Volyymi
33
Numero
3
Artikkelinumero
100
ISSN
Julkaisufoorumi
Julkaisufoorumitaso
2
Avoin saatavuus
Avoin saatavuus kustantajan palvelussa
Kyllä
Julkaisukanavan avoin saatavuus
Osittain avoin julkaisukanava
Rinnakkaistallennettu
Kyllä
Muut tiedot
Tieteenalat
Matematiikka
Avainsanat
[object Object]
Julkaisumaa
Yhdysvallat (USA)
Kustantajan kansainvälisyys
Kansainvälinen
Kieli
englanti
Kansainvälinen yhteisjulkaisu
Kyllä
Yhteisjulkaisu yrityksen kanssa
Ei
DOI
10.1007/s12220-022-01131-7
Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen
Kyllä