undefined

Generative adversarial networks with bio-inspired primary visual cortex for Industry 4.0

Julkaisuvuosi

2022

Tekijät

Branytskyi, Vladyslav; Golovianko, Mariia; Malyk, Diana; Terziyan, Vagan

Tiivistelmä

Biologicalization (biological transformation) is an emerging trend in Industry 4.0 affecting digitization of manufacturing and related processes. It brings up the next generation of manufacturing technology and systems that extensively use biological and bio-inspired principles, materials, functions, structures and resources. This research is a contribution to the further convergence of computer and human vision for more robust and accurate automated object recognition and image generation. We present VOneGANs, a novel class of generative adversarial networks (GANs) with the qualitatively updated discriminative component. The new model incorporates a biologically constrained digital primary visual cortex V1. This earliest cortical visual area performs the first stage of human‘s visual processing and is believed to be a reason of its robustness and accuracy. Experiments with the updated architectures confirm the improved stability of GANs training and the higher quality of the automatically generated visual content. The promising results allow considering VOneGANs as providers of high-quality training content and as enablers of future simulation-based decision-making and decision-support tools for condition-monitoring, supervisory control, diagnostics, predictive maintenance, and cybersecurity in Industry 4.0. See presentation slides: https://ai.it.jyu.fi/ISM-2021-V1-GAN.pptx
Näytä enemmän

Organisaatiot ja tekijät

Jyväskylän yliopisto

Terziyan Vagan Orcid -palvelun logo

Julkaisutyyppi

Julkaisumuoto

Artikkeli

Emojulkaisun tyyppi

Konferenssi

Artikkelin tyyppi

Muu artikkeli

Yleisö

Tieteellinen

Vertaisarvioitu

Vertaisarvioitu

OKM:n julkaisutyyppiluokitus

A4 Artikkeli konferenssijulkaisussa

Julkaisukanavan tiedot

Emojulkaisun toimittajat

Longo, Francesco; Affenzeller, Michael; Padovano, Antonio

Kustantaja

Elsevier

Volyymi

200

Sivut

418-427

Julkaisu­foorumi

71301

Julkaisufoorumitaso

1

Avoin saatavuus

Avoin saatavuus kustantajan palvelussa

Kyllä

Julkaisukanavan avoin saatavuus

Kokonaan avoin julkaisukanava

Rinnakkaistallennettu

Kyllä

Muut tiedot

Tieteenalat

Tietojenkäsittely ja informaatiotieteet

Avainsanat

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Julkaisumaa

Alankomaat

Kustantajan kansainvälisyys

Kansainvälinen

Kieli

englanti

Kansainvälinen yhteisjulkaisu

Kyllä

Yhteisjulkaisu yrityksen kanssa

Ei

DOI

10.1016/j.procs.2022.01.240

Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen

Kyllä