undefined

Discovering hidden brain network responses to naturalistic stimuli via tensor component analysis of multi-subject fMRI data

Julkaisuvuosi

2022

Tekijät

Hu, Guoqiang; Li, Huanjie; Zhao, Wei; Hao, Yuxing; Bai, Zonglei; Nickerson, Lisa D.; Cong, Fengyu

Abstrakti:

The study of brain network interactions during naturalistic stimuli facilitates a deeper understanding of human brain function. To estimate large-scale brain networks evoked with naturalistic stimuli, a tensor component analysis (TCA) based framework was used to characterize shared spatio-temporal patterns across subjects in a purely data-driven manner. In this framework, a third-order tensor is constructed from the timeseries extracted from all brain regions from a given parcellation, for all participants, with modes of the tensor corresponding to spatial distribution, time series and participants. TCA then reveals spatially and temporally shared components, i.e., evoked networks with the naturalistic stimuli, their time courses of activity and subject loadings of each component. To enhance the reproducibility of the estimation with the adaptive TCA algorithm, a novel spectral clustering method, tensor spectral clustering, was proposed and applied to evaluate the stability of the TCA algorithm. We demonstrated the effectiveness of the proposed framework via simulations and real fMRI data collected during a motor task with a traditional fMRI study design. We also applied the proposed framework to fMRI data collected during passive movie watching to illustrate how reproducible brain networks are evoked by naturalistic movie viewing.
Näytä enemmän

Organisaatiot ja tekijät

Julkaisutyyppi

Julkaisumuoto

Artikkeli

Emojulkaisun tyyppi

Lehti

Artikkelin tyyppi

Alkuperäisartikkeli:

Yleisö

Tieteellinen

Vertaisarvioitu

Vertaisarvioitu

OKM:n julkaisutyyppiluokitus

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisukanavan tiedot

Lehti/Sarja

Neuroimage

Kustantaja

Elsevier

Volyymi

255

Artikkelinumero

119193

Julkaisu­foorumi

63888

Julkaisufoorumitaso

2

Avoin saatavuus

Avoin saatavuus kustantajan palvelussa

Kyllä

Julkaisukanavan avoin saatavuus

Kokonaan avoin julkaisukanava

Rinnakkaistallennettu

Kyllä

Muut tiedot

Tieteenalat

Tietojenkäsittely ja informaatiotieteet; Neurotieteet

Avainsanat

[object Object],[object Object],[object Object],[object Object],[object Object]

Julkaisumaa

Alankomaat

Kustantajan kansainvälisyys

Kansainvälinen

Kieli

englanti

Kansainvälinen yhteisjulkaisu

Kyllä

Yhteisjulkaisu yrityksen kanssa

Ei

DOI

10.1016/j.neuroimage.2022.119193

Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen

Kyllä