undefined

Cutting rules and positivity in finite temperature many-body theory

Julkaisuvuosi

2022

Tekijät

Hyrkäs, Markku; Karlsson, Daniel; van Leeuwen, Robert

Tiivistelmä

For a given diagrammatic approximation in many-body perturbation theory it is not guaranteed that positive observables, such as the density or the spectral function, retain their positivity. For zero-temperature systems we developed a method [Phys.Rev.B{\bf 90},115134 (2014)] based on so-called cutting rules for Feynman diagrams that enforces these properties diagrammatically, thus solving the problem of negative spectral densities observed for various vertex approximations. In this work we extend this method to systems at finite temperature by formulating the cutting rules in terms of retarded $N$-point functions, thereby simplifying earlier approaches and simultaneously solving the issue of non-vanishing vacuum diagrams that has plagued finite temperature expansions. Our approach is moreover valid for nonequilibrium systems in initial equilibrium and allows us to show that important commonly used approximations, namely the $GW$, second Born and $T$-matrix approximation, retain positive spectral functions at finite temperature. Finally we derive an analytic continuation relation between the spectral forms of retarded $N$-point functions and their Matsubara counterparts and a set of Feynman rules to evaluate them.
Näytä enemmän

Organisaatiot ja tekijät

Jyväskylän yliopisto

Karlsson Daniel Orcid -palvelun logo

Hyrkäs Markku

Van Leeuwen Robertus Orcid -palvelun logo

Julkaisutyyppi

Julkaisumuoto

Artikkeli

Emojulkaisun tyyppi

Lehti

Artikkelin tyyppi

Alkuperäisartikkeli

Yleisö

Tieteellinen

Vertaisarvioitu

Vertaisarvioitu

OKM:n julkaisutyyppiluokitus

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisukanavan tiedot

Volyymi

55

Numero

33

Artikkelinumero

335301

Julkaisu­foorumi

61358

Julkaisufoorumitaso

2

Avoin saatavuus

Avoin saatavuus kustantajan palvelussa

Ei

Rinnakkaistallennettu

Kyllä

Muut tiedot

Tieteenalat

Fysiikka

Julkaisumaa

Yhdistynyt kuningaskunta

Kustantajan kansainvälisyys

Kansainvälinen

Kieli

englanti

Kansainvälinen yhteisjulkaisu

Ei

Yhteisjulkaisu yrityksen kanssa

Ei

DOI

10.1088/1751-8121/ac802d

Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen

Kyllä