Spectral rigidity for spherically symmetric manifolds with boundary
Julkaisuvuosi
2022
Tekijät
de Hoop, Maarten V.; Ilmavirta, Joonas; Katsnelson, Vitaly
Tiivistelmä
We prove a trace formula for three-dimensional spherically symmetric Riemannian manifolds with boundary which satisfy the Herglotz condition: Under a “clean intersection hypothesis” and assuming an injectivity hypothesis associated to the length spectrum, the wave trace is singular at the lengths of periodic broken rays. In particular, the Neumann spectrum of the Laplace–Beltrami operator uniquely determines the length spectrum. The trace formula also applies for the toroidal modes of the free oscillations in the earth. Under this hypothesis and the Herglotz condition, we then prove that the length spectrum is rigid: Deformations preserving the length spectrum and spherical symmetry are necessarily trivial in any dimension, provided the Herglotz condition and a geometrical condition are satisfied. Combining the two results shows that the Neumann spectrum of the Laplace–Beltrami operator is rigid in this class of manifolds with boundary.
Näytä enemmänOrganisaatiot ja tekijät
Julkaisutyyppi
Julkaisumuoto
Artikkeli
Emojulkaisun tyyppi
Lehti
Artikkelin tyyppi
Alkuperäisartikkeli
Yleisö
TieteellinenVertaisarvioitu
VertaisarvioituOKM:n julkaisutyyppiluokitus
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäJulkaisukanavan tiedot
Kustantaja
Volyymi
160
Sivut
54-98
ISSN
Julkaisufoorumi
Julkaisufoorumitaso
3
Avoin saatavuus
Avoin saatavuus kustantajan palvelussa
Ei
Rinnakkaistallennettu
Ei
Muut tiedot
Tieteenalat
Matematiikka
Avainsanat
[object Object],[object Object],[object Object]
Julkaisumaa
Ranska
Kustantajan kansainvälisyys
Kansainvälinen
Kieli
englanti
Kansainvälinen yhteisjulkaisu
Kyllä
Yhteisjulkaisu yrityksen kanssa
Ei
DOI
10.1016/j.matpur.2021.12.009
Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen
Kyllä