undefined

Improving Scalable K-Means++

Julkaisuvuosi

2021

Tekijät

Hämäläinen, Joonas; Kärkkäinen, Tommi; Rossi, Tuomo

Tiivistelmä

Two new initialization methods for K-means clustering are proposed. Both proposals are based on applying a divide-and-conquer approach for the K-means‖ type of an initialization strategy. The second proposal also uses multiple lower-dimensional subspaces produced by the random projection method for the initialization. The proposed methods are scalable and can be run in parallel, which make them suitable for initializing large-scale problems. In the experiments, comparison of the proposed methods to the K-means++ and K-means‖ methods is conducted using an extensive set of reference and synthetic large-scale datasets. Concerning the latter, a novel high-dimensional clustering data generation algorithm is given. The experiments show that the proposed methods compare favorably to the state-of-the-art by improving clustering accuracy and the speed of convergence. We also observe that the currently most popular K-means++ initialization behaves like the random one in the very high-dimensional cases
Näytä enemmän

Organisaatiot ja tekijät

Jyväskylän yliopisto

Hämäläinen Joonas Orcid -palvelun logo

Kärkkäinen Tommi Orcid -palvelun logo

Rossi Tuomo Orcid -palvelun logo

Julkaisutyyppi

Julkaisumuoto

Artikkeli

Emojulkaisun tyyppi

Lehti

Artikkelin tyyppi

Alkuperäisartikkeli

Yleisö

Tieteellinen

Vertaisarvioitu

Vertaisarvioitu

OKM:n julkaisutyyppiluokitus

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisukanavan tiedot

Kustantaja

MDPI AG

Volyymi

14

Numero

1

Artikkelinumero

6

Julkaisu­foorumi

75024

Julkaisufoorumitaso

1

Avoin saatavuus

Avoin saatavuus kustantajan palvelussa

Kyllä

Julkaisukanavan avoin saatavuus

Kokonaan avoin julkaisukanava

Rinnakkaistallennettu

Kyllä

Avoimen saatavuuden kirjoittajamaksu €

829

Avoimen saatavuuden kirjoittajamaksun vuosi

2020

Muut tiedot

Tieteenalat

Tietojenkäsittely ja informaatiotieteet

Avainsanat

[object Object],[object Object],[object Object],[object Object]

Julkaisumaa

Sveitsi

Kustantajan kansainvälisyys

Kansainvälinen

Kieli

englanti

Kansainvälinen yhteisjulkaisu

Ei

Yhteisjulkaisu yrityksen kanssa

Ei

DOI

10.3390/a14010006

Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen

Kyllä