Comparison of feature importance measures as explanations for classification models
Julkaisuvuosi
2021
Tekijät
Saarela, Mirka; Jauhiainen, Susanne
Tiivistelmä
Explainable artificial intelligence is an emerging research direction helping the user or developer of machine learning models understand why models behave the way they do. The most popular explanation technique is feature importance. However, there are several different approaches how feature importances are being measured, most notably global and local. In this study we compare different feature importance measures using both linear (logistic regression with L1 penalization) and non-linear (random forest) methods and local interpretable model-agnostic explanations on top of them. These methods are applied to two datasets from the medical domain, the openly available breast cancer data from the UCI Archive and a recently collected running injury data. Our results show that the most important features differ depending on the technique. We argue that a combination of several explanation techniques could provide more reliable and trustworthy results. In particular, local explanations should be used in the most critical cases such as false negatives.
Näytä enemmänOrganisaatiot ja tekijät
Julkaisutyyppi
Julkaisumuoto
Artikkeli
Emojulkaisun tyyppi
Lehti
Artikkelin tyyppi
Alkuperäisartikkeli
Yleisö
TieteellinenVertaisarvioitu
VertaisarvioituOKM:n julkaisutyyppiluokitus
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäJulkaisukanavan tiedot
Lehti
Kustantaja
Volyymi
3
Numero
2
Artikkelinumero
272
ISSN
Julkaisufoorumi
Julkaisufoorumitaso
1
Avoin saatavuus
Avoin saatavuus kustantajan palvelussa
Kyllä
Julkaisukanavan avoin saatavuus
Osittain avoin julkaisukanava
Rinnakkaistallennettu
Kyllä
Muut tiedot
Tieteenalat
Tietojenkäsittely ja informaatiotieteet
Avainsanat
[object Object],[object Object],[object Object]
Julkaisumaa
Saksa
Kustantajan kansainvälisyys
Kansainvälinen
Kieli
englanti
Kansainvälinen yhteisjulkaisu
Ei
Yhteisjulkaisu yrityksen kanssa
Ei
DOI
10.1007/s42452-021-04148-9
Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen
Kyllä