undefined

Investigating the Impact of Radiation-Induced Soft Errors on the Reliability of Approximate Computing Systems

Julkaisuvuosi

2020

Tekijät

Matana Luza, Lucas; Söderström, Daniel; Tsiligiannis, Georgios; Puchner, Helmut; Cazzaniga, Carlo; Sanchez, Ernesto; Bosio, Alberto; Dilillo, Luigi

Abstrakti:

Approximate Computing (AxC) is a well-known paradigm able to reduce the computational and power overheads of a multitude of applications, at the cost of a decreased accuracy. Convolutional Neural Networks (CNNs) have proven to be particularly suited for AxC because of their inherent resilience to errors. However, the implementation of AxC techniques may affect the intrinsic resilience of the application to errors induced by Single Events in a harsh environment. This work introduces an experimental study of the impact of neutron irradiation on approximate computing techniques applied on the data representation of a CNN.
Näytä enemmän

Organisaatiot ja tekijät

Jyväskylän yliopisto

Söderström Daniel Orcid -palvelun logo

Julkaisutyyppi

Julkaisumuoto

Artikkeli

Emojulkaisun tyyppi

Konferenssi

Artikkelin tyyppi

Muu artikkeli:

Yleisö

Tieteellinen

Vertaisarvioitu

Ei-vertaisarvioitu

OKM:n julkaisutyyppiluokitus

B3 Vertaisarvioimaton artikkeli konferenssijulkaisussa

Avoin saatavuus

Avoin saatavuus kustantajan palvelussa

Ei

Rinnakkaistallennettu

Kyllä

Muut tiedot

Tieteenalat

Fysiikka; Sähkö-, automaatio- ja tietoliikennetekniikka, elektroniikka

Avainsanat

[object Object],[object Object],[object Object]

Julkaisumaa

Yhdysvallat (USA)

Kustantajan kansainvälisyys

Kansainvälinen

Kieli

englanti

Kansainvälinen yhteisjulkaisu

Kyllä

Yhteisjulkaisu yrityksen kanssa

Kyllä

DOI

10.1109/DFT50435.2020.9250865

Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen

Kyllä