undefined

Weighted BMO, Riemann-Liouville type operators, and approximation of stochastic integrals in models with jumps

Julkaisuvuosi

2020

Tekijät

Nguyen, Tran Thuan

Tiivistelmä

This thesis investigates the interplay between weighted bounded mean oscillation (BMO), Riemann–Liouville type operators applied to càdlàg processes, real interpolation, gradient type estimates for functionals on the Lévy–Itô space, and approximation for stochastic integrals with jumps. There are two main parts included in this thesis. The first part discusses the connections between the approximation problem in L2 or in weighted BMO, Riemann–Liouville type operators, and the real interpolation theory in a general framework (Chapter 3). The second part provides various applications of results in the first part to several models: diffusions in the Brownian setting (Section 3.5) and certain jump models (Chapter 4) for which the (exponential) Lévy settings are typical examples (Chapter 6 and Chapter 7). Especially, for the models with jumps we propose a new approximation scheme based on an adjustment of the Riemann approximation of stochastic integrals so that one can effectively exploit the features of weighted BMO. In our context, making a bridge from the first to the second part requires gradient type estimates for a semigroup acting on Hölder functions in both the Brownian setting (Section 3.5) and the (exponential) Lévy setting (Chapter 5). In the latter case, we consider a kind of gradient processes appearing naturally from the Malliavin derivative of functionals of the Lévy process, and we show how the gradient behaves in time depending on the “direction” one tests.
Näytä enemmän

Organisaatiot ja tekijät

Jyväskylän yliopisto

Nguyen Tran Thuan Orcid -palvelun logo

Julkaisutyyppi

Julkaisumuoto

Erillisteos

Yleisö

Tieteellinen

OKM:n julkaisutyyppiluokitus

G5 Artikkeliväitöskirja

Julkaisukanavan tiedot

Lehti

JYU dissertations

Kustantaja

Jyväskylän yliopisto

Avoin saatavuus

Avoin saatavuus kustantajan palvelussa

Kyllä

Julkaisukanavan avoin saatavuus

Kokonaan avoin julkaisukanava

Rinnakkaistallennettu

Ei

Muut tiedot

Tieteenalat

Matematiikka

Avainsanat

[object Object],[object Object],[object Object],[object Object]

Julkaisumaa

Suomi

Kustantajan kansainvälisyys

Kotimainen

Kieli

englanti

Kansainvälinen yhteisjulkaisu

Ei

Yhteisjulkaisu yrityksen kanssa

Ei

Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen

Kyllä