undefined

Ergonomic and Reliable Bayesian Inference with Adaptive Markov Chain Monte Carlo

Julkaisuvuosi

2020

Tekijät

Vihola, Matti

Tiivistelmä

Adaptive Markov chain Monte Carlo (MCMC) methods provide an ergonomic way to perform Bayesian inference, imposing mild modeling constraints and requiring little user specification. The aim of this section is to provide a practical introduction to selected set of adaptive MCMC methods and to suggest guidelines for choosing appropriate methods for certain classes of models. We consider simple unimodal targets with random-walk-based methods, multimodal target distributions with parallel tempering, and Bayesian hidden Markov models using particle MCMC. The section is complemented by an easy-to-use open-source implementation of the presented methods in Julia, with examples.
Näytä enemmän

Organisaatiot ja tekijät

Julkaisutyyppi

Julkaisumuoto

Artikkeli

Emojulkaisun tyyppi

Kokoomateos

Artikkelin tyyppi

Muu artikkeli

Yleisö

Tieteellinen

Vertaisarvioitu

Vertaisarvioitu

OKM:n julkaisutyyppiluokitus

A3 Kirjan tai muun kokoomateoksen osa

Julkaisukanavan tiedot

Emojulkaisun toimittajat

Balakrishnan, N.; Colton, T.; Everitt, B.; Piegorsch, W.; Ruggeri, F.; Teugels, J. L.

Sivut

1-12

Julkaisu­foorumi

5574

Julkaisufoorumitaso

2

Avoin saatavuus

Avoin saatavuus kustantajan palvelussa

Ei

Rinnakkaistallennettu

Kyllä

Muut tiedot

Tieteenalat

Matematiikka; Tilastotiede

Avainsanat

[object Object],[object Object],[object Object],[object Object]

Julkaisumaa

Yhdysvallat (USA)

Kustantajan kansainvälisyys

Kansainvälinen

Kieli

englanti

Kansainvälinen yhteisjulkaisu

Ei

Yhteisjulkaisu yrityksen kanssa

Ei

DOI

10.1002/9781118445112.stat08286

Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen

Kyllä