undefined

Indecomposable sets of finite perimeter in doubling metric measure spaces

Julkaisuvuosi

2020

Tekijät

Bonicatto, Paolo; Pasqualetto, Enrico; Rajala, Tapio

Abstrakti:

We study a measure-theoretic notion of connectedness for sets of finite perimeter in the setting of doubling metric measure spaces supporting a weak (1,1)-Poincaré inequality. The two main results we obtain are a decomposition theorem into indecomposable sets and a characterisation of extreme points in the space of BV functions. In both cases, the proof we propose requires an additional assumption on the space, which is called isotropicity and concerns the Hausdorff-type representation of the perimeter measure.
Näytä enemmän

Organisaatiot ja tekijät

Jyväskylän yliopisto

Pasqualetto Enrico

Rajala Tapio Orcid -palvelun logo

Julkaisutyyppi

Julkaisumuoto

Artikkeli

Emojulkaisun tyyppi

Lehti

Artikkelin tyyppi

Alkuperäisartikkeli:

Yleisö

Tieteellinen

Vertaisarvioitu

Vertaisarvioitu

OKM:n julkaisutyyppiluokitus

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisukanavan tiedot

Kustantaja

Springer

Volyymi

59

Numero

2

Artikkelinumero

63

Julkaisu­foorumi

52940

Julkaisufoorumitaso

2

Avoin saatavuus

Avoin saatavuus kustantajan palvelussa

Kyllä

Julkaisukanavan avoin saatavuus

Osittain avoin julkaisukanava

Rinnakkaistallennettu

Kyllä

Muut tiedot

Tieteenalat

Matematiikka

Avainsanat

[object Object],[object Object],[object Object],[object Object]

Julkaisumaa

Saksa

Kustantajan kansainvälisyys

Kansainvälinen

Kieli

englanti

Kansainvälinen yhteisjulkaisu

Kyllä

Yhteisjulkaisu yrityksen kanssa

Ei

DOI

10.1007/s00526-020-1725-7

Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen

Kyllä