Monotone Hopf-Harmonics
Julkaisuvuosi
2020
Tekijät
Iwaniec, Tadeusz; Onninen, Jani
Tiivistelmä
We introduce the concept of monotone Hopf-harmonics in 2D as an alternative to harmonic homeomorphisms. Much of the foregoing is motivated by the principle of non-interpenetration of matter in the mathematical theory of Nonlinear Elasticity (NE). The question we are concerned with is whether or not a Dirichlet energy-minimal mapping between Jordan domains with a prescribed boundary homeomorphism remains injective in the domain. The classical theorem of Radó–Kneser–Choquet asserts that this is the case when the target domain is convex. An alternative way to deal with arbitrary target domains is to minimize the Dirichlet energy subject to only homeomorphisms and their limits. This leads to the so called Hopf–Laplace equation. Among its solutions (some rather surreal) are continuous monotone mappings of Sobolev class W1,2 loc , called monotone Hopf-harmonics. It is at the heart of the present paper to show that such solutions are correct generalizations of harmonic homeomorphisms and, in particular, are legitimate deformations of hyperelastic materials in the modern theory of NE. We make this clear by means of several examples.
Näytä enemmänOrganisaatiot ja tekijät
Jyväskylän yliopisto
Onninen Jani
Julkaisutyyppi
Julkaisumuoto
Artikkeli
Emojulkaisun tyyppi
Lehti
Artikkelin tyyppi
Alkuperäisartikkeli
Yleisö
TieteellinenVertaisarvioitu
VertaisarvioituOKM:n julkaisutyyppiluokitus
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäJulkaisukanavan tiedot
Kustantaja
Volyymi
237
Numero
2
Sivut
743-777
ISSN
Julkaisufoorumi
Julkaisufoorumitaso
3
Avoin saatavuus
Avoin saatavuus kustantajan palvelussa
Ei
Rinnakkaistallennettu
Ei
Muut tiedot
Tieteenalat
Matematiikka
Julkaisumaa
Saksa
Kustantajan kansainvälisyys
Kansainvälinen
Kieli
englanti
Kansainvälinen yhteisjulkaisu
Kyllä
Yhteisjulkaisu yrityksen kanssa
Ei
DOI
10.1007/s00205-020-01518-2
Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen
Kyllä