undefined

Lipschitz Stability of Travel Time Data

Julkaisuvuosi

2025

Tekijät

Ilmavirta, Joonas; Kykkänen, Antti; Lassas, Matti; Saksala, Teemu; Shedlock, Andrew

Abstrakti:

We prove that the reconstruction of a certain type of length spaces from their travel time data on a closed subset is Lipschitz stable. The travel time data is the set of distance functions from the entire space, measured on the chosen closed subset. The case of a Riemannian manifold with boundary with the boundary as the measurement set appears is a classical geometric inverse problem arising from Gel’fand’s inverse boundary spectral problem. Examples of spaces satisfying our assumptions include some non-simple Riemannian manifolds, Euclidean domains with non-trivial topology, and metric trees.
Näytä enemmän

Organisaatiot ja tekijät

Jyväskylän yliopisto

Ilmavirta Joonas Orcid -palvelun logo

Helsingin yliopisto

Lassas Matti

Julkaisutyyppi

Julkaisumuoto

Artikkeli

Emojulkaisun tyyppi

Lehti

Artikkelin tyyppi

Alkuperäisartikkeli:

Yleisö

Tieteellinen

Vertaisarvioitu

Vertaisarvioitu

OKM:n julkaisutyyppiluokitus

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisukanavan tiedot

Volyymi

35

Artikkelinumero

244

Julkaisu­foorumi

60508

Julkaisufoorumitaso

2

Avoin saatavuus

Avoin saatavuus kustantajan palvelussa

Kyllä

Julkaisukanavan avoin saatavuus

Osittain avoin julkaisukanava

Rinnakkaistallennettu

Kyllä

Muut tiedot

Tieteenalat

Matematiikka

Avainsanat

[object Object],[object Object],[object Object]

Julkaisumaa

Yhdysvallat (USA)

Kustantajan kansainvälisyys

Kansainvälinen

Kieli

englanti

Kansainvälinen yhteisjulkaisu

Kyllä

Yhteisjulkaisu yrityksen kanssa

Ei

DOI

10.1007/s12220-025-02084-3

Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen

Kyllä