Improving Performance in Colorectal Cancer Histology Decomposition using Deep and Ensemble Machine Learning
Julkaisuvuosi
2024
Tekijät
Prezja, Fabi; Annala, Leevi; Kiiskinen, Sampsa; Lahtinen, Suvi; Ojala, Timo; Ruusuvuori, Pekka; Kuopio, Teijo
Tiivistelmä
In routine colorectal cancer management, histologic samples stained with hematoxylin and eosin are commonly used. Nonetheless, their potential for defining objective biomarkers for patient stratification and treatment selection is still being explored. The current gold standard relies on expensive and time-consuming genetic tests. However, recent research highlights the potential of convolutional neural networks (CNNs) to facilitate the extraction of clinically relevant biomarkers from these readily available images. These CNN-based biomarkers can predict patient outcomes comparably to golden standards, with the added advantages of speed, automation, and minimal cost. The predictive potential of CNN-based biomarkers fundamentally relies on the ability of CNNs to accurately classify diverse tissue types from whole slide microscope images. Consequently, enhancing the accuracy of tissue class decomposition is critical to amplifying the prognostic potential of imaging-based biomarkers. This study introduces a hybrid deep transfer learning and ensemble machine learning model that improves upon previous approaches, including a transformer and neural architecture search baseline for this task.We employed a pairing of the EfficientNetV2 architecture with a random forest classification head. Our model achieved 96.74% accuracy (95% CI: 96.3%-97.1%) on the external test set and 99.89% on the internal test set. Recognizing the potential of these models in the task, we have made them publicly available.
Näytä enemmänOrganisaatiot ja tekijät
Helsingin yliopisto
Annala Leevi
Turun yliopisto
Ruusuvuori Pekka
Julkaisutyyppi
Julkaisumuoto
Artikkeli
Emojulkaisun tyyppi
Lehti
Artikkelin tyyppi
Alkuperäisartikkeli
Yleisö
TieteellinenVertaisarvioitu
VertaisarvioituOKM:n julkaisutyyppiluokitus
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäJulkaisukanavan tiedot
Avoin saatavuus
Avoin saatavuus kustantajan palvelussa
Kyllä
Julkaisukanavan avoin saatavuus
Kokonaan avoin julkaisukanava
Rinnakkaistallennettu
Kyllä
Avoimen saatavuuden kirjoittajamaksu €
1640
Avoimen saatavuuden kirjoittajamaksun vuosi
2025
Muut tiedot
Tieteenalat
Tietojenkäsittely ja informaatiotieteet; Syöpätaudit
Avainsanat
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Julkaisumaa
Yhdistynyt kuningaskunta
Kustantajan kansainvälisyys
Kansainvälinen
Kieli
englanti
Kansainvälinen yhteisjulkaisu
Ei
Yhteisjulkaisu yrityksen kanssa
Ei
DOI
10.1016/j.heliyon.2024.e37561
Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen
Kyllä