undefined

Conformal harmonic coordinates

Julkaisuvuosi

2023

Tekijät

Lassas, Matti; Liimatainen, Tony

Tiivistelmä

We study conformal harmonic coordinates on Riemannian and Lorentzian manifolds, which are coordinates constructed as quotients of solutions to the conformal Laplace equation. We show existence of conformal harmonic coordinates under general conditions and find that the coordinates are a conformal analogue of harmonic coordinates. We prove up to boundary regularity results for conformal mappings. We show that Weyl, Cotton, Bach, and Fefferman-Graham obstruction tensors are elliptic operators in conformal harmonic coordinates if one also normalizes the determinant of the metric. We give a corresponding elliptic regularity results, including the analytic case. We prove a unique continuation result for Bach and obstruction flat manifolds, which are conformally flat near a point. We prove unique continuation results for conformal mappings both on Riemannian and Lorentzian manifolds.
Näytä enemmän

Organisaatiot ja tekijät

Jyväskylän yliopisto

Liimatainen Tony

Helsingin yliopisto

Lassas Matti

Liimatainen Tony

Julkaisutyyppi

Julkaisumuoto

Artikkeli

Emojulkaisun tyyppi

Lehti

Artikkelin tyyppi

Alkuperäisartikkeli

Yleisö

Tieteellinen

Vertaisarvioitu

Vertaisarvioitu

OKM:n julkaisutyyppiluokitus

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisukanavan tiedot

Volyymi

31

Numero

8

Sivut

2101-2155

Julkaisu­foorumi

53795

Julkaisufoorumitaso

2

Avoin saatavuus

Avoin saatavuus kustantajan palvelussa

Ei

Rinnakkaistallennettu

Ei

Muut tiedot

Tieteenalat

Matematiikka

Avainsanat

[object Object],[object Object],[object Object]

Julkaisumaa

Yhdysvallat (USA)

Kustantajan kansainvälisyys

Kansainvälinen

Kieli

englanti

Kansainvälinen yhteisjulkaisu

Ei

Yhteisjulkaisu yrityksen kanssa

Ei

DOI

10.4310/CAG.2023.v31.n8.a8

Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen

Kyllä