On limits at infinity of weighted Sobolev functions
Julkaisuvuosi
2022
Tekijät
Eriksson-Bique, Sylvester; Koskela, Pekka; Nguyen, Khanh
Abstrakti:
We study necessary and sufficient conditions for a Muckenhoupt weight w∈Lloc1(Rd) that yield almost sure existence of radial, and vertical, limits at infinity for Sobolev functions u∈Wloc1,p(Rd,w) with a p-integrable gradient |∇u|∈Lp(Rd,w) where 1≤p<∞ and 2≤d<∞. The question is shown to subtly depend on the sense in which the limit is taken. First, we fully characterize the existence of radial limits. Second, we give essentially sharp sufficient conditions for the existence of vertical limits. In the specific setting of product and radial weights, we give if and only if statements. These generalize and give new proofs for results of Fefferman and Uspenskiĭ. As applications to partial differential equations, we give results on the limiting behavior of weighted q-Harmonic functions at infinity (1<q><∞), which depend on the integrability degree of its gradient. </q>
Näytä enemmänOrganisaatiot ja tekijät
Julkaisutyyppi
Julkaisumuoto
Artikkeli
Emojulkaisun tyyppi
Lehti
Artikkelin tyyppi
Alkuperäisartikkeli:
Yleisö
TieteellinenVertaisarvioitu
VertaisarvioituOKM:n julkaisutyyppiluokitus
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäJulkaisukanavan tiedot
Lehti/Sarja
Kustantaja
Volyymi
283
Numero
10
Artikkelinumero
109672
ISSN
Julkaisufoorumi
Julkaisufoorumitaso
2
Avoin saatavuus
Avoin saatavuus kustantajan palvelussa
Kyllä
Julkaisukanavan avoin saatavuus
Osittain avoin julkaisukanava
Rinnakkaistallennettu
Kyllä
Muut tiedot
Tieteenalat
Matematiikka
Avainsanat
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Julkaisumaa
Belgia
Kustantajan kansainvälisyys
Kansainvälinen
Kieli
englanti
Kansainvälinen yhteisjulkaisu
Ei
Yhteisjulkaisu yrityksen kanssa
Ei
DOI
10.1016/j.jfa.2022.109672
Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen
Kyllä