Combinatorial Optimization for Artificial Intelligence Enabled Mobile Network Automation
Julkaisuvuosi
2021
Tekijät
Ahmed, Furqan; Asghar, Muhammad Zeeshan; Imran, Ali
Abstrakti:
This chapter discusses combinatorial optimization techniques for enabling intelligent automation in mobile networks. A number of discrete optimization problems pertinent to mobile network automation can be solved effectively using artificial intelligence based combinatorial optimization approaches such as heuristics and metaheuristics. Relevant use-cases include both initial parameter assignment during network roll-out, and continuous optimization of configuration management parameters during network operation and maintenance. We discuss mobile network automation use-cases and motivation for using different heuristics and metaheuristics in designing network optimization algorithms. To this end, we review important metaheuristics from a network optimization perspective, and discuss their applications in different mobile network automation use-cases. As a case study, we discuss greedy heuristics for physical cell identifier (PCI) assignment problem, which is an important use-case relevant to both 4G and 5G networks. The performance of algorithms is compared using a network model based on data from a real LTE mobile network. Results show that greedy heuristics constitute a viable approach for PCI assignment in highly dense networks. We conclude that heuristics and metaheuristics based combinatorial optimization algorithms are highly effective in meeting emerging challenges related to network optimization, thereby enabling intelligent automation in mobile networks.
Näytä enemmänOrganisaatiot ja tekijät
Aalto-yliopisto
Asghar Muhammad-Zeeshan
Jyväskylän yliopisto
Asghar Muhammad
Julkaisutyyppi
Julkaisumuoto
Artikkeli
Emojulkaisun tyyppi
Kokoomateos
Artikkelin tyyppi
Muu artikkeli:
Yleisö
TieteellinenVertaisarvioitu
VertaisarvioituOKM:n julkaisutyyppiluokitus
A3 Kirjan tai muun kokoomateoksen osaJulkaisukanavan tiedot
Lehti/Sarja
Emojulkaisun nimi
Metaheuristics in Machine Learning : Theory and Applications
Kustantaja
Volyymi
967
Sivut
663-690
ISSN
ISBN
Julkaisufoorumi
Avoin saatavuus
Avoin saatavuus kustantajan palvelussa
Ei
Rinnakkaistallennettu
Ei
Muut tiedot
Tieteenalat
Tietojenkäsittely ja informaatiotieteet; Sähkö-, automaatio- ja tietoliikennetekniikka, elektroniikka
Avainsanat
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Kustantajan kansainvälisyys
Kansainvälinen
Kieli
englanti
Kansainvälinen yhteisjulkaisu
Kyllä
Yhteisjulkaisu yrityksen kanssa
Kyllä
DOI
10.1007/978-3-030-70542-8_27
Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen
Kyllä