Advancing Reproducibility and Accountability of Unsupervised Machine Learning in Text Mining: Importance of Transparency in Reporting Preprocessing and Algorithm Selection

Kuvaus

Machine learning (ML) enables the analysis of large datasets for pattern discovery. ML methods and the standards for their use have recently attracted increasing attention in organizational research; recent accounts have raised awareness of the importance of transparent ML reporting practices, especially considering the influence of preprocessing and algorithm choice on analytical results. However, efforts made thus far to advance the quality of ML research have failed to consider the special methodological requirements of unsupervised machine learning (UML) separate from the more common supervised machine learning (SML). We confronted these issues by studying a common organizational research dataset of unstructured text and discovered interpretability and representativeness trade-offs between combinations of preprocessing and UML algorithm choices that jeopardize research reproducibility, accountability, and transparency. We highlight the need for contextual justifications to address such issues and offer principles for assessing the contextual suitability of UML choices in research settings.
Näytä enemmän

Julkaisuvuosi

2022

Aineiston tyyppi

Tekijät

Johanna Kirjavainen - Tekijä

Laura Valtonen - Tekijä

Saku J. Mäkinen - Tekijä

figshare - Julkaisija

Projekti

Muut tiedot

Tieteenalat

Liiketaloustiede

Kieli

englanti

Saatavuus

Avoin

Lisenssi

Creative Commons Nimeä 4.0 Kansainvälinen (CC BY 4.0)

Avainsanat

FOS: Sociology, 150310 Organisation and Management Theory, 160807 Sociological Methodology and Research Methods, FOS: Economics and business

Asiasanat

Ajallinen kattavuus

undefined

Liittyvät aineistot