Predicting the trading behavior of socially connected investors

Kuvaus

We find that investors’ future trading decisions are driven by the patterns of their social neighborhood and the trading activity therein. Moreover, we provide evidence that investors weigh their social connections differently in terms of information transfer. Methodologically, we tackle the complex, cyclical patterns of investor social networks by graph neural networks, which allow us to propose a sophisticated way to predict the behavior of investors with data on their social connections. Our analysis is based on the unique data on observed social links through director (insider) positions on the same companies as well as links to family members, together with full investor-level market-wise transaction data. The data is available online at https://doi.org/10.6084/m9.figshare.20310240.v1
Näytä enemmän

Julkaisuvuosi

2022

Aineiston tyyppi

Tekijät

Kestutis Baltakys - Tekijä

Margarita Baltakiene - Tekijä

Zenodo - Julkaisija

Projekti

Muut tiedot

Tieteenalat

Tietojenkäsittely ja informaatiotieteet

Kieli

englanti

Saatavuus

Avoin

Lisenssi

Ei määritelty

Avainsanat

Computer and information sciences

Asiasanat

Ajallinen kattavuus

undefined

Liittyvät aineistot