undefined

Deep learning for green energy: predicting consumption and production trends across the Americas

Julkaisuvuosi

2026

Tekijät

Liu, Yonghong; Rashid, Javed; Saleem, Muhammad S.; Ashfaq, Sonia; Faheem, Muhammad

Abstrakti:

Green energy projections can help meet rising energy needs, address climate change, and other challenges by forecasting future trends. This study uses data from 1965 to 2023 to predict American green energy production and consumption. The gated recurrent unit model was chosen because it shows the time-dependent structure in the data time series. This study utilized energy consumption and renewable generation sources from Kaggle, spanning from 1965 to 2022, and data from the Energy Institute website, covering the period from 2022 to 2023. The model has a mean absolute error of 0.0417 and 0.0341 for consumption and production, respectively, and a mean squared error of 0.0110 and 0.0083 for production. The GRU model achieves the highest accuracy, identifying green energy data trends with an RMSE of 0.1049 for consumption and 0.0912 for output. This study shows how this model predicts energy needs. It emphasizes the integration of renewable energy and innovation in resource distribution. The research says the Quest for More Sustainable energy systems must overcome predicted technical challenges. All stakeholders gain from improved energy management policies with this knowledge. The GRU model’s performance enables the incorporation of economic and meteorological data to enhance prediction accuracy and support global efforts to clean up the energy system.
Näytä enemmän

Organisaatiot ja tekijät

Julkaisutyyppi

Julkaisumuoto

Artikkeli

Emojulkaisun tyyppi

Lehti

Artikkelin tyyppi

Alkuperäisartikkeli:

Yleisö

Tieteellinen

Vertaisarvioitu

Vertaisarvioitu

OKM:n julkaisutyyppiluokitus

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisukanavan tiedot

Volyymi

108

Artikkelinumero

5

Julkaisu­foorumi

55124

Avoin saatavuus

Avoin saatavuus kustantajan palvelussa

Kyllä

Julkaisukanavan avoin saatavuus

Osittain avoin julkaisukanava

Kustantajan version lisenssi

CC BY

Rinnakkaistallennettu

Ei

Muut tiedot

Tieteenalat

Sähkö-, automaatio- ja tietoliikennetekniikka, elektroniikka

Avainsanat

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Kieli

englanti

Kansainvälinen yhteisjulkaisu

Kyllä

Yhteisjulkaisu yrityksen kanssa

Ei

DOI

10.1007/s00202-025-03437-5

Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen

Kyllä