undefined

Regularization with optimal space-time priors

Julkaisuvuosi

2025

Tekijät

Bubba Tatiana A.; Heikkilä Tommi; Labate Demetrio; Ratti Luca

Tiivistelmä

We propose a variational regularization approach based on a multiscale representation called cylindrical shearlets aimed at dynamic imaging problems, especially dynamic tomography. The intuitive idea of our approach is to integrate a sequence of separable static problems in the mismatch term of the cost function, while the regularization term handles the nonstationary target as a spatio-temporal object. This approach is motivated by the fact that cylindrical shearlets provide (nearly) optimally sparse approximations on an idealized class of functions modeling spatio-temportal data and the numerical observation that they provide highly sparse approximations even for more general spatio-temporal image sequences found in dynamic tomography applications. To formulate our regularization model, we introduce cylindrical shearlet smoothness spaces, which are instrumental for defining suitable embeddings in functional spaces. We prove that the proposed regularization strategy is well-defined, and the minimization problem has a unique solution (for p > 1). Furthermore, we provide convergence rates (in terms of the symmetric Bregman distance) under deterministic and random noise conditions, within the context of statistical inverse learning. We numerically validate our theoretical results using both simulated and measured dynamic tomography data, showing that our approach leads to an efficient and robust reconstruction strategy.
Näytä enemmän

Organisaatiot ja tekijät

Julkaisutyyppi

Julkaisumuoto

Artikkeli

Emojulkaisun tyyppi

Lehti

Artikkelin tyyppi

Alkuperäisartikkeli

Yleisö

Tieteellinen

Vertaisarvioitu

Vertaisarvioitu

OKM:n julkaisutyyppiluokitus

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisukanavan tiedot

Volyymi

18

Numero

3

Sivut

1563-1600

Julkaisu­foorumi

67081

Julkaisufoorumitaso

2

Avoin saatavuus

Avoin saatavuus kustantajan palvelussa

Ei

Rinnakkaistallennettu

Kyllä

Muut tiedot

Tieteenalat

Matematiikka

Avainsanat

[object Object],[object Object],[object Object],[object Object]

Kustantajan kansainvälisyys

Kansainvälinen

Kansainvälinen yhteisjulkaisu

Kyllä

Yhteisjulkaisu yrityksen kanssa

Ei

DOI

10.1137/24M1661923

Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen

Kyllä