Regularization with optimal space-time priors
Julkaisuvuosi
2025
Tekijät
Bubba Tatiana A.; Heikkilä Tommi; Labate Demetrio; Ratti Luca
Tiivistelmä
We propose a variational regularization approach based on a multiscale representation called cylindrical shearlets aimed at dynamic imaging problems, especially dynamic tomography. The intuitive idea of our approach is to integrate a sequence of separable static problems in the mismatch term of the cost function, while the regularization term handles the nonstationary target as a spatio-temporal object. This approach is motivated by the fact that cylindrical shearlets provide (nearly) optimally sparse approximations on an idealized class of functions modeling spatio-temportal data and the numerical observation that they provide highly sparse approximations even for more general spatio-temporal image sequences found in dynamic tomography applications. To formulate our regularization model, we introduce cylindrical shearlet smoothness spaces, which are instrumental for defining suitable embeddings in functional spaces. We prove that the proposed regularization strategy is well-defined, and the minimization problem has a unique solution (for p > 1). Furthermore, we provide convergence rates (in terms of the symmetric Bregman distance) under deterministic and random noise conditions, within the context of statistical inverse learning. We numerically validate our theoretical results using both simulated and measured dynamic tomography data, showing that our approach leads to an efficient and robust reconstruction strategy.
Näytä enemmänOrganisaatiot ja tekijät
Julkaisutyyppi
Julkaisumuoto
Artikkeli
Emojulkaisun tyyppi
Lehti
Artikkelin tyyppi
Alkuperäisartikkeli
Yleisö
TieteellinenVertaisarvioitu
VertaisarvioituOKM:n julkaisutyyppiluokitus
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäJulkaisukanavan tiedot
Volyymi
18
Numero
3
Sivut
1563-1600
ISSN
Julkaisufoorumi
Julkaisufoorumitaso
2
Avoin saatavuus
Avoin saatavuus kustantajan palvelussa
Ei
Rinnakkaistallennettu
Kyllä
Muut tiedot
Tieteenalat
Matematiikka
Avainsanat
[object Object],[object Object],[object Object],[object Object]
Kustantajan kansainvälisyys
Kansainvälinen
Kansainvälinen yhteisjulkaisu
Kyllä
Yhteisjulkaisu yrityksen kanssa
Ei
DOI
10.1137/24M1661923
Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen
Kyllä