undefined

Hybrid regression method to predict forest variables from Earth observation data in boreal forests

Julkaisuvuosi

2025

Tekijät

Halme, Eelis; Mõttus, Matti

Tiivistelmä

Satellite remote sensing is essential for monitoring the boreal forest, the largest land biome on Earth. With the growing volume of Earth observation (EO) data and increasing demand for actionable information, more efficient and robust monitoring methods are needed. Machine learning-based approaches offer flexibility but rely on extensive training data, which can be generated with reflectance models. This study introduces a hybrid regression method, integrating the forest reflectance and transmittance model FRT with a random forest regressor. Using a representative dataset from Finland (24 081 plots), the method was trained to predict structural boreal forest variables: mean height, mean diameter at breast height (DBH) and basal area from EO data. The prediction performance was evaluated using three independent test areas, two from Finland and one from Sweden. In Finland, the most accurate predictions had root-mean-square errors of 3.6 m (19.1%) for height, 6.3 cm (27.3%) for DBH and 9.9 m²/ha (31.6%) for basal area. In Sweden, low R² values (< 0.1) indicated limitations in transferability. The results suggest that combining reflectance modelling with machine learning can advance environmental monitoring methodologies in the boreal forest but also demonstrate the challenges of applying these methods across different geographical regions.
Näytä enemmän

Organisaatiot ja tekijät

Teknologian tutkimuskeskus VTT Oy

Halme Eelis Orcid -palvelun logo

Mõttus Matti Orcid -palvelun logo

Julkaisutyyppi

Julkaisumuoto

Artikkeli

Emojulkaisun tyyppi

Lehti

Artikkelin tyyppi

Alkuperäisartikkeli

Yleisö

Tieteellinen

Vertaisarvioitu

Vertaisarvioitu

OKM:n julkaisutyyppiluokitus

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisukanavan tiedot

Volyymi

58

Numero

1

Artikkelinumero

2462032

Julkaisu­foorumi

66614

Julkaisufoorumitaso

1

Avoin saatavuus

Avoin saatavuus kustantajan palvelussa

Kyllä

Julkaisukanavan avoin saatavuus

Kokonaan avoin julkaisukanava

Kustantajan version lisenssi

CC BY

Rinnakkaistallennettu

Ei

Muut tiedot

Tieteenalat

Sähkö-, automaatio- ja tietoliikennetekniikka, elektroniikka

Avainsanat

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Kieli

englanti

Kansainvälinen yhteisjulkaisu

Ei

Yhteisjulkaisu yrityksen kanssa

Ei

DOI

10.1080/22797254.2025.2462032

Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen

Kyllä