undefined

Advancing Energy Efficiency: Machine Learning Based Forecasting Models for Integrated Power Systems in Food Processing Company

Julkaisuvuosi

2024

Tekijät

Mirasci Seray; Uygyr Sara; Aksoy Asli

Tiivistelmä

The increasing energy demand and costs in the industrial sector necessitate effective energy management strategies. This study investigates a food processing company with an on-site cogeneration system, which faces challenges of high energy costs and fluctuating energy demand due to its seasonal production. During off-peak seasons, surplus energy is generated and frequently sold at reduced rates, thereby increasing operational inefficiencies. Conversely, during on-peak seasons, the company faces heightened energy demands and increased costs, further complicating energy management and impacting overall operational effectiveness. To address these challenges, an energy consumption forecasting model (ECFM) has been developed which employs Quantile Regression (QR) as a statistical method and different machine learning (ML) algorithms, including Decision Trees (DT), Boosted Trees, Bagged Trees, and Artificial Neural Networks (ANN). Although QR is an effective method for handling non-normally distributed data, it is inadequate for capturing the high volatility of energy consumption in this study. Among the ML models, the bi-layered ANN demonstrated the most effective performance achieving the lowest forecasting errors and demonstrating a 52.42% reduction in CO2 emissions. This reduction is consistent with the company's decarbonization strategies and regulatory compliance goals. The findings highlight the potential of advanced ML models, particularly the bi-layered ANN, to enhance the accuracy of energy forecasting, reduce greenhouse gas emissions, and create competitive advantages in industrial settings. This study contributes to the growing body of knowledge on the integration of operational efficiency with environmental sustainability in energy management practices. It demonstrates the potential of advanced forecasting models to support the development of robust and sustainable energy solutions across a range of industrial contexts.
Näytä enemmän

Organisaatiot ja tekijät

Julkaisutyyppi

Julkaisumuoto

Artikkeli

Emojulkaisun tyyppi

Lehti

Artikkelin tyyppi

Alkuperäisartikkeli

Yleisö

Tieteellinen

Vertaisarvioitu

Vertaisarvioitu

OKM:n julkaisutyyppiluokitus

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisukanavan tiedot

Kustantaja

Elsevier

Volyymi

165

Artikkelinumero

110445

Julkaisu­foorumi

58403

Julkaisufoorumitaso

2

Avoin saatavuus

Avoin saatavuus kustantajan palvelussa

Kyllä

Julkaisukanavan avoin saatavuus

Kokonaan avoin julkaisukanava

Rinnakkaistallennettu

Ei

Muut tiedot

Tieteenalat

Liiketaloustiede

Avainsanat

[object Object],[object Object],[object Object],[object Object]

Kustantajan kansainvälisyys

Kansainvälinen

Kansainvälinen yhteisjulkaisu

Kyllä

Yhteisjulkaisu yrityksen kanssa

Ei

DOI

10.1016/j.ijepes.2024.110445

Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen

Kyllä