Loop group factorization method for the magnetic and thermostatic nonabelian ray transforms
Julkaisuvuosi
2024
Tekijät
Jathar Shubham Ramkisan; Kar Manas; Railo Jesse
Tiivistelmä
We study the injectivity of the matrix attenuated and nonabelian ray transforms on compact surfaces with boundary for nontrapping $\lambda$-geodesic flows and the general linear group of invertible complex matrices. We generalize the loop group factorization argument of Paternain and Salo to reduce to the setting of the unitary group when $\lambda$ has the vertical Fourier degree at most $2$. This covers the magnetic and thermostatic flows as special cases. Our article settles the general injectivity question of the nonabelian ray transform for simple magnetic flows in combination with an earlier result by Ainsworth. We stress that the injectivity question in the unitary case for simple Gaussian thermostats remains open. Furthermore, we observe that the loop group argument does not apply when $\lambda$ has higher Fourier modes.
Näytä enemmänOrganisaatiot ja tekijät
Julkaisutyyppi
Julkaisumuoto
Artikkeli
Emojulkaisun tyyppi
Lehti
Artikkelin tyyppi
Alkuperäisartikkeli
Yleisö
TieteellinenVertaisarvioitu
VertaisarvioituOKM:n julkaisutyyppiluokitus
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäJulkaisukanavan tiedot
Lehti
Kustantaja
Volyymi
41
Numero
1
Sivut
1-22
ISSN
Julkaisufoorumi
Julkaisufoorumitaso
3
Avoin saatavuus
Avoin saatavuus kustantajan palvelussa
Ei
Julkaisukanavan avoin saatavuus
Osittain avoin julkaisukanava
Rinnakkaistallennettu
Kyllä
Muut tiedot
Tieteenalat
Matematiikka
Avainsanat
[object Object],[object Object],[object Object],[object Object]
Kustantajan kansainvälisyys
Kansainvälinen
Kansainvälinen yhteisjulkaisu
Kyllä
Yhteisjulkaisu yrityksen kanssa
Ei
DOI
10.1088/1361-6420/ada08a
Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen
Kyllä