An Evaluation of Transformer Models for Early Intrusion Detection in Cloud Continuum
Julkaisuvuosi
2023
Tekijät
Md Mahbub Islam; Tanwir Ahmad; Dragos Truscan
Abstrakti:
<p>With the increasing popularity of the cloud continuum, the security of different layers and nodes involved has become more relevant than ever. Intrusion detection systems, are one of the main tools to identify and intercept intrusion attacks. Furthermore, identifying the attacks in time, before they are completed, is necessary in order to deploy countermeasures in time and to limit the losses. In this work, we evaluate the use of transformer models for implementing early-detection signature-based detection systems targeted at Cloud Continuum. We implement the approach in the context of our tool for early detection of network intrusions and we evaluate it using the CICIDS2017 dataset and MQTT-IDS-2020. The results show that transformer models are a viable alternative for early-detection systems and this will pave the road for further research on the topic.</p>
Näytä enemmänOrganisaatiot ja tekijät
Julkaisutyyppi
Julkaisumuoto
Artikkeli
Emojulkaisun tyyppi
Konferenssi
Artikkelin tyyppi
Muu artikkeli:
Yleisö
TieteellinenVertaisarvioitu
VertaisarvioituOKM:n julkaisutyyppiluokitus
A4 Artikkeli konferenssijulkaisussaJulkaisukanavan tiedot
Lehti/Sarja
Emojulkaisun nimi
Sivut
279-284
ISSN
ISBN
Julkaisufoorumi
Julkaisufoorumitaso
1
Avoin saatavuus
Avoin saatavuus kustantajan palvelussa
Ei
Rinnakkaistallennettu
Kyllä
Muut tiedot
Tieteenalat
Tietojenkäsittely ja informaatiotieteet
Avainsanat
[object Object],[object Object],[object Object],[object Object]
Kustantajan kansainvälisyys
Kansainvälinen
Kieli
englanti
Kansainvälinen yhteisjulkaisu
Ei
Yhteisjulkaisu yrityksen kanssa
Ei
DOI
10.1109/CloudCom59040.2023.00052
Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen
Kyllä