undefined

Exploring the Performance of Large Language Models for Data Analysis Tasks Through the CRISP-DM Framework

Julkaisuvuosi

2024

Tekijät

Nurlan Musazade; Jozsef Mezei; Xiaolu Wang

Abstrakti:

This paper investigates the impact of Large Language Models (LLMs), specifically GPT, on data analysis tasks within the framework of CRISP-DM (Cross-Industry Standard Process for Data Mining). In order to assess the efficiency of text-to-code language models in data-related tasks, we systematically examine the performance of LLMs in the stages of the data mining process. GPT models are tested against a series of Python programming and SQL tasks derived from a Master’s program’s curriculum. The tasks focus on data exploration, visualization, preprocessing, and advanced analytical tasks like association rule mining and classification. The findings show that GPT models exhibit proficiency in Python programming across various CRISP-DM stages, particularly in Data Understanding, Preparation, and Modeling. They adeptly utilize Python libraries for data manipulation and visualization, demonstrating potential as effective tools in data science. However, the study also uncovers areas where the GPT Text-to-code model shows partial correctness, highlighting the need for human oversight in complex data analysis scenarios. This research contributes to understanding how AI can augment traditional data analysis methods, particularly under the CRISP-DM framework. It reveals the potential of LLMs in automating stages of data analysis, suggesting an acceleration in analytical processes and decision-making. The study provides valuable insights for organizations integrating AI into data analysis, balancing AI strengths with human expertise.
Näytä enemmän

Organisaatiot ja tekijät

Åbo Akademi

Musazade Nurlan

Mezei Jozsef

Wang Xiaolu

Julkaisutyyppi

Julkaisumuoto

Artikkeli

Emojulkaisun tyyppi

Konferenssi

Artikkelin tyyppi

Muu artikkeli:

Yleisö

Tieteellinen

Vertaisarvioitu

Vertaisarvioitu

OKM:n julkaisutyyppiluokitus

A4 Artikkeli konferenssijulkaisussa

Avoin saatavuus

Avoin saatavuus kustantajan palvelussa

Ei

Rinnakkaistallennettu

Ei

Muut tiedot

Tieteenalat

Tietojenkäsittely ja informaatiotieteet; Liiketaloustiede

Avainsanat

[object Object],[object Object],[object Object],[object Object]

Kustantajan kansainvälisyys

Kansainvälinen

Kieli

englanti

Kansainvälinen yhteisjulkaisu

Ei

Yhteisjulkaisu yrityksen kanssa

Ei

DOI

10.1007/978-3-031-60227-6_5

Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen

Kyllä