An Improved FakeBERT for Fake News Detection
Julkaisuvuosi
2024
Tekijät
Ali Arshad; Gulzar Maryam
Tiivistelmä
In the present era of the internet and social media, the way of information dissemination has changed. However, due to rapid growth in the amount of news generated regularly and the unsupervised nature of social media, fake news turns out to be a big problem. Fake news can easily build a false positive or negative perception about a person, or an event. Fake news was also used as a tool by propagandists during the Coronavirus (COVID-19) pandemic. Thus, there is a need to use technology to tag fake news and prevent its dissemination. Previously, different algorithms were designed to detect fake news but without considering the semantic meaning and long sentence dependence. This research work proposes a new approach to the detection of fake news in the context of COVID-19. The suggested approach uses a combination of Bidirectional Encoder Representations from Transformers (BERT) for extracting context meaning from sentences, SVM for pattern identification to detect fake news in a better way from the COVID-19 dataset, and an evolutionary algorithm called Non-dominated Sorting Genetic Algorithm II (NSGA-II) to distribute text for Support Vector Machine (SVM) classification. The suggested approach improves accuracy by 5.2 % by removing a certain amount of ambiguity from sentences.
Näytä enemmänOrganisaatiot ja tekijät
Lappeenrannan–Lahden teknillinen yliopisto LUT
Gulzar Maryam
Julkaisutyyppi
Julkaisumuoto
Artikkeli
Emojulkaisun tyyppi
Lehti
Artikkelin tyyppi
Alkuperäisartikkeli
Yleisö
TieteellinenVertaisarvioitu
VertaisarvioituOKM:n julkaisutyyppiluokitus
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäJulkaisukanavan tiedot
Lehti
Kustantaja
Volyymi
28
Numero
2
Sivut
180-188
ISSN
Julkaisufoorumi
Julkaisufoorumitaso
1
Avoin saatavuus
Avoin saatavuus kustantajan palvelussa
Kyllä
Julkaisukanavan avoin saatavuus
Kokonaan avoin julkaisukanava
Rinnakkaistallennettu
Ei
Muut tiedot
Tieteenalat
Tietojenkäsittely ja informaatiotieteet
Avainsanat
[object Object],[object Object],[object Object]
Kustantajan kansainvälisyys
Kansainvälinen
Kansainvälinen yhteisjulkaisu
Kyllä
Yhteisjulkaisu yrityksen kanssa
Ei
DOI
10.2478/acss-2023-0018
Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen
Kyllä