Nonlinear Tikhonov regularization in Hilbert scales for inverse learning
Julkaisuvuosi
2024
Tekijät
Rastogi Abhishake
Tiivistelmä
In this paper, we study Tikhonov regularization scheme in Hilbert scales for a nonlinear statistical inverse problem with general noise. The regularizing norm in this scheme is stronger than the norm in the Hilbert space. We focus on developing a theoretical analysis for this scheme based on conditional stability estimates. We utilize the concept of the distance function to establish high probability estimates of the direct and reconstruction errors in the Reproducing Kernel Hilbert space setting. Furthermore, explicit rates of convergence in terms of sample size are established for the oversmoothing case and the regular case over the regularity class defined through an appropriate source condition. Our results improve upon and generalize previous results obtained in related settings.
Näytä enemmänOrganisaatiot ja tekijät
Julkaisutyyppi
Julkaisumuoto
Artikkeli
Emojulkaisun tyyppi
Lehti
Artikkelin tyyppi
Alkuperäisartikkeli
Yleisö
TieteellinenVertaisarvioitu
VertaisarvioituOKM:n julkaisutyyppiluokitus
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäJulkaisukanavan tiedot
Kustantaja
Volyymi
82
Artikkelinumero
101824
Sivut
1-17
ISSN
Julkaisufoorumi
Julkaisufoorumitaso
1
Avoin saatavuus
Avoin saatavuus kustantajan palvelussa
Kyllä
Julkaisukanavan avoin saatavuus
Osittain avoin julkaisukanava
Rinnakkaistallennettu
Kyllä
Muut tiedot
Tieteenalat
Matematiikka
Avainsanat
[object Object],[object Object],[object Object],[object Object],[object Object]
Kustantajan kansainvälisyys
Kansainvälinen
Kansainvälinen yhteisjulkaisu
Ei
Yhteisjulkaisu yrityksen kanssa
Ei tietoa
DOI
10.1016/j.jco.2024.101824
Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen
Kyllä