On numerical implementation of α-stable priors in Bayesian inversion
Julkaisuvuosi
2023
Tekijät
Suuronen Jarkko
Tiivistelmä
In this thesis, we introduce numerical approximations of Levy a-stable random field priors for Bayesian inversion. The a-stable processes are well-studied in stochastic process literature, and they can be potentially formulated as discretization-invariant priors. The work is also motivated by the fact that Gaussian and Cauchy distributions are both part of a-stable distributions. In Bayesian inversion, Gaussian priors are prevalent choices if the unknown should be smooth, while the Cauchy are good options for discontinuity-preserving or sparsity-promoting scenarios. One of our objectives is to construct a systematic numerical treatment of the a-stable priors to favor the coexistence of heterogeneous features, which is predominantly done through hierarchical priors or mixture models. However, the probability density functions of the a-stable distributions cannot be expressed through elementary functions in general. We address the issue by introducing a hybrid method to approximate the symmetric univariate and bivariate a-stable log probability density functions. The method is fast to evaluate, works for a continuous range of stability indices, and is accurate for Bayesian inversion. We demonstrate the practical properties of the a-stable priors in high-dimensional Bayesian inverse problems. We employ several different a-stable field priors, including the difference priors and Bayesian neural networks. While the a-stable priors offer substantial novelties for the inversion, performing full inference with them is difficult due to their heavy-tailedness. This issue is illustrated with the help of advanced Markov chain Monte Carlo methods, which are unable to sample the posteriors with a-stable priors satisfactorily. We conclude the work by arguing that a-stable priors would significantly benefit from advanced inference methods. Additionally, the presented work offers a foundation for discretizing a-stable random field priors on unstructured meshes or with Karhunen-Loeve-type expansions.
Näytä enemmänOrganisaatiot ja tekijät
Lappeenrannan–Lahden teknillinen yliopisto LUT
Suuronen Jarkko
Julkaisutyyppi
Julkaisumuoto
Erillisteos
Yleisö
Tieteellinen
OKM:n julkaisutyyppiluokitus
G5 Artikkeliväitöskirja
Julkaisukanavan tiedot
Avoin saatavuus
Avoin saatavuus kustantajan palvelussa
Kyllä
Julkaisukanavan avoin saatavuus
Kokonaan avoin julkaisukanava
Rinnakkaistallennettu
Kyllä
Muut tiedot
Tieteenalat
Matematiikka
Kansainvälinen yhteisjulkaisu
Ei
Yhteisjulkaisu yrityksen kanssa
Ei
Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen
Kyllä