undefined

A swarming neural network computing approach to solve the Zika virus model

Julkaisuvuosi

2023

Tekijät

Sabir Zulqurnain; Bhat Shahid Ahmad; Raja Muhammad Asif Zahoor; Alhazmi Sharifah E.

Tiivistelmä

In this work, a swarming computational procedure is presented for the numerical treatment of the dynamical model of the susceptible, exposed, infected, and recovered (SEIR) classes that portrayed the spreading of Zika virus. The artificial neural network procedures (ANNPs) have been applied to solve the SEIR mathematical model for spreading of the Zika virus together with the hybridization efficiency of global swarming and local search schemes. The global particle swarm optimization (PSO) and local search active-set algorithm (ASA) have been proposed to solve the model. An error based objective function is presented for the SEIR differential model and then optimized by the hybrid computing efficiency of PSO-ASA. Five neurons, fifteen variables of each class and ten numbers of trials have been used to solve the SEIR mathematical model for spreading of the Zika virus. The correctness of the proposed computing ANNPs-PSO-ASA is observed by using the comparison of the obtained and reference solutions along with the performances of the absolute error, ranges around 10- 06 to 10- 08. The reliability of the designed computing ANNPs-PSO-ASA technique is observed by using the statistical operator performances on single/multiple trials for the SEIR system for spreading of the Zika virus dynamics.
Näytä enemmän

Organisaatiot ja tekijät

Julkaisutyyppi

Julkaisumuoto

Artikkeli

Emojulkaisun tyyppi

Lehti

Artikkelin tyyppi

Alkuperäisartikkeli

Yleisö

Tieteellinen

Vertaisarvioitu

Vertaisarvioitu

OKM:n julkaisutyyppiluokitus

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisukanavan tiedot

Kustantaja

Elsevier

Volyymi

126 Part B

Artikkelinumero

106924

Julkaisu­foorumi

55266

Julkaisufoorumitaso

2

Avoin saatavuus

Avoin saatavuus kustantajan palvelussa

Kyllä

Julkaisukanavan avoin saatavuus

Osittain avoin julkaisukanava

Rinnakkaistallennettu

Ei

Muut tiedot

Tieteenalat

Tietojenkäsittely ja informaatiotieteet; Liiketaloustiede; Ekologia, evoluutiobiologia

Avainsanat

[object Object],[object Object],[object Object],[object Object],[object Object]

Kustantajan kansainvälisyys

Kansainvälinen

Kansainvälinen yhteisjulkaisu

Kyllä

Yhteisjulkaisu yrityksen kanssa

Ei

DOI

10.1016/j.engappai.2023.106924

Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen

Kyllä