Efficient Early Anomaly Detection of Network Security Attacks Using Deep Learning
Julkaisuvuosi
2023
Tekijät
Tanwir Ahmad; Dragos Truscan
Abstrakti:
We present a deep-learning (DL) anomaly-based Intrusion Detection System (IDS) for networked systems, which is able to detect in realtime anomalous network traffic corresponding to security attacks while they are ongoing. Compared to similar approaches, our IDS does not require a fixed number of network packets to analyze in order to make a decision on the type of traffic and it utilizes a more compact neural network which improves its realtime performance. As shown in the experiments using the CICIDS2017 and USTC-TFC-2016 datasets, the approach is able to detect anomalous traffic with high precision and recall. In addition, the approach is able to classify the network traffic by using only a very small portion of the network flows.
Näytä enemmänOrganisaatiot ja tekijät
Julkaisutyyppi
Julkaisumuoto
Artikkeli
Emojulkaisun tyyppi
Konferenssi
Artikkelin tyyppi
Muu artikkeli:
Yleisö
TieteellinenVertaisarvioitu
VertaisarvioituOKM:n julkaisutyyppiluokitus
A4 Artikkeli konferenssijulkaisussaJulkaisukanavan tiedot
Lehti/Sarja
Proceedings of the 2023 IEEE International Conference on Cyber Security and Resilience, CSR 2023
Emojulkaisun nimi
Proceedings of the 2023 IEEE International Conference on Cyber Security and Resilience, CSR 2023
Sivut
154-159
ISBN
Julkaisufoorumi
Julkaisufoorumitaso
1
Avoin saatavuus
Avoin saatavuus kustantajan palvelussa
Ei
Rinnakkaistallennettu
Kyllä
Muut tiedot
Tieteenalat
Tietojenkäsittely ja informaatiotieteet
Avainsanat
[object Object],[object Object],[object Object],[object Object]
Kustantajan kansainvälisyys
Kansainvälinen
Kieli
englanti
Kansainvälinen yhteisjulkaisu
Ei
Yhteisjulkaisu yrityksen kanssa
Ei
DOI
10.1109/csr57506.2023.10224923
Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen
Kyllä