undefined

A Novel Semisupervised Contrastive Regression Framework for Forest Inventory Mapping With Multisensor Satellite Data

Julkaisuvuosi

2023

Tekijät

Ge, Shaojia; Gu, Hong; Su, Weimin; Lönnqvist, Anne; Antropov, Oleg

Tiivistelmä

Accurate mapping of forests is critical for forest management and carbon stocks monitoring. Deep learning (DL) is becoming more popular in Earth observation (EO), however, the availability of reference data limits its potential in wide-area forest mapping. To overcome those limitations, here we introduce contrastive regression into EO-based forest mapping and develop a novel semisupervised regression framework for wall-to-wall mapping of continuous forest variables. It combines supervised contrastive regression loss (CtRL) and semi-supervised cross-pseudo regression (CPR) loss. The framework is demonstrated over a boreal forest site using Copernicus Sentinel-1 and Sentinel-2 imagery for mapping forest tree height. Achieved prediction accuracies are strongly better compared to using vanilla UNet or traditional regression models, with relative root mean square error (rRMSE) of 15.1% on stand level. We expect that the developed framework can be used for modeling other forest variables and EO datasets.
Näytä enemmän

Organisaatiot ja tekijät

Teknologian tutkimuskeskus VTT Oy

Lönnqvist Anne

Antropov Oleg Orcid -palvelun logo

Julkaisutyyppi

Julkaisumuoto

Artikkeli

Emojulkaisun tyyppi

Lehti

Artikkelin tyyppi

Alkuperäisartikkeli

Yleisö

Tieteellinen

Vertaisarvioitu

Vertaisarvioitu

OKM:n julkaisutyyppiluokitus

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisukanavan tiedot

Volyymi

20

Artikkelinumero

2502705

Julkaisu­foorumi

57397

Julkaisufoorumitaso

1

Avoin saatavuus

Avoin saatavuus kustantajan palvelussa

Kyllä

Julkaisukanavan avoin saatavuus

Osittain avoin julkaisukanava

Kustantajan version lisenssi

CC BY

Rinnakkaistallennettu

Ei

Muut tiedot

Tieteenalat

Sähkö-, automaatio- ja tietoliikennetekniikka, elektroniikka

Avainsanat

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Kieli

englanti

Kansainvälinen yhteisjulkaisu

Kyllä

Yhteisjulkaisu yrityksen kanssa

Ei

DOI

10.1109/LGRS.2023.3281526

Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen

Kyllä