undefined

ATSC-NEX: Automated Time Series Classification With Sequential Model-Based Optimization and Nested Cross-Validation

Julkaisuvuosi

2022

Tekijät

Tahkola, Mikko; Zou, Guangrong

Tiivistelmä

New methods to perform time series classification arise frequently and multiple state-of-the-art approaches achieve high performance on benchmark datasets with respect to accuracy and computation time. However, often the modeling procedures do not include proper validation but rather rely only on either external test dataset or one-level cross-validation. ATSC-NEX is an automated procedure that employs sequential model-based optimization together with nested cross-validation to build an accurate and properly validated time series classification model. It aims to find an optimal pipeline configuration that includes the selection of input type and settings, as well as model type and hyperparameters. The results of a case study in which a model for the identification of diesel engine type is developed, show that the algorithm can efficiently find a well-performing pipeline configuration. The comparison between ATSC-NEX and some state-of-the-art methods on several benchmark datasets shows that similar accuracy can be achieved.
Näytä enemmän

Organisaatiot ja tekijät

Teknologian tutkimuskeskus VTT Oy

Zou Guangrong Orcid -palvelun logo

Tahkola Mikko Orcid -palvelun logo

Julkaisutyyppi

Julkaisumuoto

Artikkeli

Emojulkaisun tyyppi

Lehti

Artikkelin tyyppi

Alkuperäisartikkeli

Yleisö

Tieteellinen

Vertaisarvioitu

Vertaisarvioitu

OKM:n julkaisutyyppiluokitus

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisukanavan tiedot

Volyymi

10

Sivut

39299-39312

Julkaisu­foorumi

78297

Julkaisufoorumitaso

2

Avoin saatavuus

Avoin saatavuus kustantajan palvelussa

Kyllä

Julkaisukanavan avoin saatavuus

Kokonaan avoin julkaisukanava

Kustantajan version lisenssi

CC BY

Rinnakkaistallennettu

Ei

Muut tiedot

Tieteenalat

Tietojenkäsittely ja informaatiotieteet

Avainsanat

[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

Kieli

englanti

Kansainvälinen yhteisjulkaisu

Ei

Yhteisjulkaisu yrityksen kanssa

Ei

DOI

10.1109/ACCESS.2022.3166525

Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen

Kyllä