ATSC-NEX: Automated Time Series Classification With Sequential Model-Based Optimization and Nested Cross-Validation
Julkaisuvuosi
2022
Tekijät
Tahkola, Mikko; Zou, Guangrong
Tiivistelmä
New methods to perform time series classification arise frequently and multiple state-of-the-art approaches achieve high performance on benchmark datasets with respect to accuracy and computation time. However, often the modeling procedures do not include proper validation but rather rely only on either external test dataset or one-level cross-validation. ATSC-NEX is an automated procedure that employs sequential model-based optimization together with nested cross-validation to build an accurate and properly validated time series classification model. It aims to find an optimal pipeline configuration that includes the selection of input type and settings, as well as model type and hyperparameters. The results of a case study in which a model for the identification of diesel engine type is developed, show that the algorithm can efficiently find a well-performing pipeline configuration. The comparison between ATSC-NEX and some state-of-the-art methods on several benchmark datasets shows that similar accuracy can be achieved.
Näytä enemmänOrganisaatiot ja tekijät
Julkaisutyyppi
Julkaisumuoto
Artikkeli
Emojulkaisun tyyppi
Lehti
Artikkelin tyyppi
Alkuperäisartikkeli
Yleisö
TieteellinenVertaisarvioitu
VertaisarvioituOKM:n julkaisutyyppiluokitus
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäJulkaisukanavan tiedot
Lehti
Volyymi
10
Sivut
39299-39312
ISSN
Julkaisufoorumi
Julkaisufoorumitaso
2
Avoin saatavuus
Avoin saatavuus kustantajan palvelussa
Kyllä
Julkaisukanavan avoin saatavuus
Kokonaan avoin julkaisukanava
Kustantajan version lisenssi
CC BY
Rinnakkaistallennettu
Ei
Muut tiedot
Tieteenalat
Tietojenkäsittely ja informaatiotieteet
Avainsanat
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Kieli
englanti
Kansainvälinen yhteisjulkaisu
Ei
Yhteisjulkaisu yrityksen kanssa
Ei
DOI
10.1109/ACCESS.2022.3166525
Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen
Kyllä