Lightweight adaptation to situational changes in classifiers of multimodal human data multimodal human data: Dissertation
Julkaisuvuosi
2016
Tekijät
Vildjiounaite, Elena
Tiivistelmä
Intelligent computer applications need to adapt their behaviour to contexts and users, but conventional methods to train multimodal classifiers do not suit to this purpose because they require acquiring large sets of labelled data for each situation. Due to large variety of usage contexts of personal applications, no developer can predict all these situations, to say nothing of collecting adequate training databases for them. Hence personal applications require new methods for adapting to changing runtime contexts. As runtime adaptation largely relies on interaction with end users, these methods should be fairly lightweight with respect to standard ones, i.e. they should require much less domain knowledge and explicitly acquired data.This thesis introduces lightweight solutions for adapting reasoning models to situations at runtime, identifies important context and application characteristics and provides guidelines for considering these factors in adaptation design. The proposed solutions have been validated experimentally with realistic data sets, and the results have confirmed that they considerably reduce the dependence of context- and user-adaptive classifiers on domain knowledge and explicit interaction efforts. Studies with personal assistive applications have also demonstrated that users can accept the proposed lightweight adaptation even when its accuracy is relatively low.
Näytä enemmänOrganisaatiot ja tekijät
Teknologian tutkimuskeskus VTT Oy
Vildjiounaite Elena
Julkaisutyyppi
Julkaisumuoto
Erillisteos
Yleisö
Tieteellinen
OKM:n julkaisutyyppiluokitus
G5 Artikkeliväitöskirja
Julkaisukanavan tiedot
Lehti
VTT Science
Kustantaja
VTT Technical Research Centre of Finland
Numero
125
ISSN
ISBN
Avoin saatavuus
Avoin saatavuus kustantajan palvelussa
Kyllä
Kustantajan version lisenssi
Muu lisenssi
Rinnakkaistallennettu
Ei
Muut tiedot
Tieteenalat
Sähkö-, automaatio- ja tietoliikennetekniikka, elektroniikka
Avainsanat
[object Object],[object Object],[object Object]
Kieli
englanti
Kansainvälinen yhteisjulkaisu
Ei
Yhteisjulkaisu yrityksen kanssa
Ei
Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen
Kyllä