undefined

Automatic Cloud Detection Method Based on Generative Adversarial Networks in Remote Sensing Images

Julkaisuvuosi

2020

Tekijät

Li, Jun; Wu, Zhaocong; Hu, Zhongwen; Zhang, Yi; Molinier, Matthieu

Tiivistelmä

Clouds in optical remote sensing images seriously affect the visibility of background pixels and greatly reduce the availability of images. It is necessary to detect clouds before processing images. In this paper, a novel cloud detection method based on attentive generative adversarial network (Auto-GAN) is proposed for cloud detection. Our main idea is to inject visual attention into the domain transformation to detect clouds automatically. First, we use a discriminator (D) to distinguish between cloudy and cloud free images. Then, a segmentation network is used to detect the difference between cloudy and cloud-free images (i.e. clouds). Last, a generator (G) is used to fill in the different regions in cloud image in order to confuse the discriminator. Auto-GAN only requires images and their labels (1 for a cloud-free image, 0 for a cloudy image) in the training phase which is more time-saving to acquire than existing methods based on CNNs that require pixel-level labels. Auto-GAN is applied to cloud detection in Sentinel-2A Level 1C imagery. The results indicate that Auto-GAN method performs well in cloud detection over different land surfaces.
Näytä enemmän

Organisaatiot ja tekijät

Julkaisutyyppi

Julkaisumuoto

Artikkeli

Emojulkaisun tyyppi

Konferenssi

Artikkelin tyyppi

Muu artikkeli

Yleisö

Tieteellinen

Vertaisarvioitu

Vertaisarvioitu

OKM:n julkaisutyyppiluokitus

A4 Artikkeli konferenssijulkaisussa

Julkaisukanavan tiedot

Avoin saatavuus

Avoin saatavuus kustantajan palvelussa

Kyllä

Julkaisukanavan avoin saatavuus

Kokonaan avoin julkaisukanava

Kustantajan version lisenssi

CC BY

Rinnakkaistallennettu

Ei

Muut tiedot

Tieteenalat

Avaruustieteet ja tähtitiede; Ympäristötiede

Avainsanat

[object Object],[object Object],[object Object],[object Object],[object Object]

Kieli

englanti

Kansainvälinen yhteisjulkaisu

Kyllä

Yhteisjulkaisu yrityksen kanssa

Ei

DOI

10.5194/isprs-annals-V-2-2020-885-2020

Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen

Kyllä