undefined

Artificial Neural Dynamics for Portfolio Allocation: An Optimization Perspective

Julkaisuvuosi

2024

Tekijät

Cao, Xinwei; Yang, Yiguo; Li, Shuai; Stanimirović, Predrag S.; Katsikis, Vasilios N.

Tiivistelmä

<p>Real-time high-frequency trading poses a significant challenge to the classical portfolio allocation problem, demanding rapid computational efficiency for constructing Markowitz model-based portfolios. Building on the principles of arbitrage pricing theory (APT), this study introduces a dynamic neural network model aimed at minimizing investment risk, optimizing portfolio allocation within predefined constraints, and maximizing returns. First, a convex optimization objective function incorporating risk constraints is formulated based on APT principles. This is followed by the introduction of a novel dynamic neural network model designed to solve the convex optimization problem, accompanied by comprehensive theoretical analysis and rigorous proofs. The study uses two distinct datasets sourced from Yahoo Finance, consisting of 30 selected stocks, covering a span of 250 valid trading days to validate the proposed methodology. The results of 30 different stock market scenario experiments indicate that, when the upper limit for investment risk is set at 3.285 × 10<sup>−4</sup>, the expected maximum investment return exceeds the Dow Jones Industrial Average (DJIA) index by 16.2816%. These empirical findings highlight the viability, stability, and efficacy of the proposed approach and framework, demonstrating its potential applicability for real-time, high-frequency trading scenarios. Furthermore, the outcomes suggest policy implications for risk management and portfolio optimization in dynamic financial environments.</p>
Näytä enemmän

Organisaatiot ja tekijät

Oulun yliopisto

Li Shuai

Julkaisutyyppi

Julkaisumuoto

Artikkeli

Emojulkaisun tyyppi

Lehti

Artikkelin tyyppi

Alkuperäisartikkeli

Yleisö

Tieteellinen

Vertaisarvioitu

Vertaisarvioitu

OKM:n julkaisutyyppiluokitus

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisukanavan tiedot

Kustantaja

IEEE

Volyymi

2025; 55

Numero

3

Sivut

1960-1971

Julkaisu­foorumi

57581

Julkaisufoorumitaso

2

Avoin saatavuus

Avoin saatavuus kustantajan palvelussa

Kyllä

Julkaisukanavan avoin saatavuus

Osittain avoin julkaisukanava

Kustantajan version lisenssi

CC BY

Rinnakkaistallennettu

Kyllä

Rinnakkaistallenteen lisenssi

CC BY

Muut tiedot

Tieteenalat

Tietojenkäsittely ja informaatiotieteet; Sähkö-, automaatio- ja tietoliikennetekniikka, elektroniikka

Avainsanat

[object Object],[object Object],[object Object],[object Object],[object Object]

Julkaisumaa

Yhdysvallat (USA)

Kustantajan kansainvälisyys

Kansainvälinen

Kieli

englanti

Kansainvälinen yhteisjulkaisu

Kyllä

Yhteisjulkaisu yrityksen kanssa

Ei

DOI

10.1109/TSMC.2024.3514919

Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen

Kyllä