undefined

Automatically human action recognition (HAR) with view variation from skeleton means of adaptive transformer network (RETRACTED)

Julkaisuvuosi

2023

Tekijät

Mehmood, Faisal; Chen, Enqing; Abbas, Touqeer; Akbar, Muhammad Azeem; Khan, Arif Ali

Tiivistelmä

Human action recognition using skeletons has become increasingly appealing to a growing number of researchers in recent years. It is particularly challenging to recognize actions when they are captured from different angles because there are so many variations in their representations. This paper proposes an automatic strategy for determining virtual observation viewpoints that are based on learning and data driven to solve the problem of view variation throughout an act. Our VA-CNN and VA-RNN networks, which use convolutional and recurrent neural networks with long short-term memory, offer an alternative to the conventional method of reorienting skeletons according to a human-defined earlier benchmark. Using the unique view adaption module, each network first identifies the best observation perspectives and then transforms the skeletons for end-to-end detection with the main classification network based on those viewpoints. The suggested view adaptive models can provide significantly more consistent virtual viewpoints using the skeletons of different perspectives. By removing views, the models allow networks to learn action-specific properties more efficiently. Furthermore, we developed a two-stream scheme (referred to as VA-fusion) that integrates the performance of two networks to obtain an improved prediction. Random rotation of skeletal sequences is used to avoid overfitting during training and improve the reliability of view adaption models. An extensive experiment demonstrates that our proposed view adaptive networks outperform existing solutions on five challenging benchmarks.
Näytä enemmän

Organisaatiot ja tekijät

Oulun yliopisto

Khan Arif Orcid -palvelun logo

Julkaisutyyppi

Julkaisumuoto

Artikkeli

Emojulkaisun tyyppi

Lehti

Artikkelin tyyppi

Alkuperäisartikkeli

Yleisö

Tieteellinen

Vertaisarvioitu

Vertaisarvioitu

OKM:n julkaisutyyppiluokitus

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Julkaisukanavan tiedot

Avoin saatavuus

Avoin saatavuus kustantajan palvelussa

Ei

Julkaisukanavan avoin saatavuus

Osittain avoin julkaisukanava

Rinnakkaistallennettu

Kyllä

Muut tiedot

Tieteenalat

Tietojenkäsittely ja informaatiotieteet

Avainsanat

[object Object],[object Object],[object Object],[object Object],[object Object]

Kustantajan kansainvälisyys

Kansainvälinen

Kansainvälinen yhteisjulkaisu

Kyllä

Yhteisjulkaisu yrityksen kanssa

Ei

DOI

10.1007/s00500-023-08008-z

Julkaisu kuuluu opetus- ja kulttuuriministeriön tiedonkeruuseen

Kyllä